These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9940388)

  • 1. Experimental study of the band structure of GaP, GaAs, GaSb, InP, InAs, and InSb.
    Williams GP; Cerrina F; Lapeyre GJ; Anderson JR; Smith RJ; Hermanson J
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5548-5557. PubMed ID: 9940388
    [No Abstract]   [Full Text] [Related]  

  • 2. Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb.
    Adachi S
    Phys Rev B Condens Matter; 1987 May; 35(14):7454-7463. PubMed ID: 9941048
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of Interfacial Schemes on the Optical and Structural Properties of InAs/GaSb Type-II Superlattices.
    Alshahrani D; Kesaria M; Jiménez JJ; Kwan D; Srivastava V; Delmas M; Morales FM; Liang B; Huffaker D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8624-8635. PubMed ID: 36724387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-inverted gaps in InAs/GaSb and GaSb/InAs core-shell nanowires.
    Luo N; Huang GY; Liao G; Ye LH; Xu HQ
    Sci Rep; 2016 Dec; 6():38698. PubMed ID: 27924856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Reflection and Transmission of Infrared Materials. V: Spectra from 2 micro to 50 micro.
    McCarthy DE
    Appl Opt; 1968 Oct; 7(10):1997. PubMed ID: 20068925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Reflection and Transmission of Infrared Materials. VI: Bibliography.
    McCarthy D
    Appl Opt; 1968 Nov; 7(11):2221-5. PubMed ID: 20068972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasiparticle semiconductor band structures including spin-orbit interactions.
    Malone BD; Cohen ML
    J Phys Condens Matter; 2013 Mar; 25(10):105503. PubMed ID: 23396813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum confinement in group III-V semiconductor 2D nanostructures.
    Cipriano LA; Di Liberto G; Tosoni S; Pacchioni G
    Nanoscale; 2020 Sep; 12(33):17494-17501. PubMed ID: 32808618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces.
    Wu S; Chen Y; Yu J; Gao H; Jiang C; Huang ; Zhang Y; Wei Y; Ma W
    Nanoscale Res Lett; 2013; 8(1):298. PubMed ID: 23799946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological instability in InAs/GaSb superlattices due to interfacial bonds.
    Li JH; Stokes DW; Caha O; Ammu SL; Bai J; Bassler KE; Moss SC
    Phys Rev Lett; 2005 Aug; 95(9):096104. PubMed ID: 16197232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
    Liu JS; Zhu Y; Goley PS; Hudait MK
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2512-7. PubMed ID: 25568961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Relaxation in GaSb/GaAs(111)A Heteroepitaxy Using Thin InAs Interlayers.
    Ohtake A; Mano T; Mitsuishi K; Sakuma Y
    ACS Omega; 2018 Nov; 3(11):15592-15597. PubMed ID: 31458215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of growth direction and strain conditions on the band lineup at GaSb/InSb and InAs/InSb interfaces.
    Picozzi S; Continenza A; Freeman AJ
    Phys Rev B Condens Matter; 1996 Apr; 53(16):10852-10857. PubMed ID: 9982655
    [No Abstract]   [Full Text] [Related]  

  • 16. Efficient calculation of excitonic effects in solids including approximated quasiparticle energies.
    Matusalem F; Marques M; Guilhon I; Teles LK
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32492665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb.
    Massidda S; Continenza A; Freeman AJ; de Pascale TM ; Meloni F; Serra M
    Phys Rev B Condens Matter; 1990 Jun; 41(17):12079-12085. PubMed ID: 9993660
    [No Abstract]   [Full Text] [Related]  

  • 18. Many-body perturbation theory study of type-II InAs/GaSb superlattices within the GW approximation.
    Taghipour Z; Shojaee E; Krishna S
    J Phys Condens Matter; 2018 Aug; 30(32):325701. PubMed ID: 29923836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement.
    Fahed M; Desplanque L; Troadec D; Patriarche G; Wallart X
    Nanotechnology; 2016 Dec; 27(50):505301. PubMed ID: 27861165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.