These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9941143)

  • 1. Inter-quantum-well diffusion in semiconductor superlattices.
    Lyo SK
    Phys Rev B Condens Matter; 1987 May; 35(15):8065-8073. PubMed ID: 9941143
    [No Abstract]   [Full Text] [Related]  

  • 2. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.
    Alvaro M; Bonilla LL; Carretero M; Melnik RV; Prabhakar S
    J Phys Condens Matter; 2013 Aug; 25(33):335301. PubMed ID: 23877936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zener tunneling in semiconductor superlattices.
    Romanova JY; Demidov EV; Mourokh LG; Romanov YA
    J Phys Condens Matter; 2011 Aug; 23(30):305801. PubMed ID: 21747156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
    Saha B; Sands TD; Waghmare UV
    J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
    Yoon SJ; Guo Z; Dos Santos Claro PC; Shevchenko EV; Huang L
    ACS Nano; 2016 Jul; 10(7):7208-15. PubMed ID: 27387010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant impurity bands in semiconductor superlattices.
    Stehr D; Metzner C; Helm M; Roch T; Strasser G
    Phys Rev Lett; 2005 Dec; 95(25):257401. PubMed ID: 16384504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices.
    Zhou W; Zhang YY; Chen J; Li D; Zhou J; Liu Z; Chisholm MF; Pantelides ST; Loh KP
    Sci Adv; 2018 Mar; 4(3):eaap9096. PubMed ID: 29740600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of an electric field on the spin polarization in semiconductor superlattices.
    Kleinert P; Bryksin VV
    J Phys Condens Matter; 2005 Jun; 17(25):3865-77. PubMed ID: 21690703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified formulation of excitonic absorption spectra of semiconductor quantum wells, superlattices, and quantum wires.
    Lefebvre P; Christol P; Mathieu H
    Phys Rev B Condens Matter; 1993 Dec; 48(23):17308-17315. PubMed ID: 10008340
    [No Abstract]   [Full Text] [Related]  

  • 11. Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe.
    Chen Z; Moore J; Radtke G; Sirringhaus H; O'Brien S
    J Am Chem Soc; 2007 Dec; 129(50):15702-9. PubMed ID: 18034489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of the Thermal Resistivity of InAlAs, InGaAs, and InAlAs/InGaAs Superlattices.
    Jaffe GR; Mei S; Boyle C; Kirch JD; Savage DE; Botez D; Mawst LJ; Knezevic I; Lagally MG; Eriksson MA
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11970-11975. PubMed ID: 30807087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodeposited ceramic superlattices.
    Switzer JA; Shane MJ; Phillips RJ
    Science; 1990 Jan; 247(4941):444-6. PubMed ID: 17788610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum confinement and host/guest chemistry: probing a new dimension.
    Stucky GD; Mac Dougall JE
    Science; 1990 Feb; 247(4943):669-78. PubMed ID: 17771883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum coherence in semiconductor superlattices.
    Agulló-Rueda F; Mendez EE; Hong JM
    Phys Rev B Condens Matter; 1989 Jul; 40(2):1357-1360. PubMed ID: 9991975
    [No Abstract]   [Full Text] [Related]  

  • 17. Transition from classical to quantum response in semiconductor superlattices at THz frequncies.
    Zeuner S; Keay BJ; Allen SJ; Maranowski KD; Gossard AC; Bhattacharya U; Rodwell MJ
    Phys Rev B Condens Matter; 1996 Jan; 53(4):R1717-R1720. PubMed ID: 9983689
    [No Abstract]   [Full Text] [Related]  

  • 18. Electronic transport and depletion of quantum wells by tunneling through deep levels in semiconductor superlattices.
    Capasso F; Mohammed K; Cho AY
    Phys Rev Lett; 1986 Nov; 57(18):2303-2306. PubMed ID: 10033688
    [No Abstract]   [Full Text] [Related]  

  • 19. Calculations of hole subbands in semiconductor quantum wells and superlattices.
    Altarelli M; Ekenberg U; Fasolino A
    Phys Rev B Condens Matter; 1985 Oct; 32(8):5138-5143. PubMed ID: 9937723
    [No Abstract]   [Full Text] [Related]  

  • 20. Drastic reduction of shot noise in semiconductor superlattices.
    Song W; Newaz AK; Son JK; Mendez EE
    Phys Rev Lett; 2006 Mar; 96(12):126803. PubMed ID: 16605940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.