These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9941545)

  • 1. Conduction band of Si-GexSi1-x superlattices using the envelope-function approximation.
    de Sterke CM ; Hall DG
    Phys Rev B Condens Matter; 1987 Jan; 35(3):1380-1387. PubMed ID: 9941545
    [No Abstract]   [Full Text] [Related]  

  • 2. Folded acoustic phonons in Si/GexSi1-x strained-layer superlattices.
    Lockwood DJ; Dharma-wardana MW; Baribeau J; Houghton DC
    Phys Rev B Condens Matter; 1987 Feb; 35(5):2243-2251. PubMed ID: 9941674
    [No Abstract]   [Full Text] [Related]  

  • 3. Raman scattering involving umklapp processes in Si/GexSi1-x superlattices.
    Dharma-wardana MW; Lockwood DJ; Baribeau J; Houghton DC
    Phys Rev B Condens Matter; 1986 Aug; 34(4):3034-3036. PubMed ID: 9940033
    [No Abstract]   [Full Text] [Related]  

  • 4. Electronic band structure of coherently strained GexSi1-x alloys on Si(001) substrates.
    Xu ZZ
    Phys Rev B Condens Matter; 1993 Feb; 47(7):3642-3648. PubMed ID: 10006465
    [No Abstract]   [Full Text] [Related]  

  • 5. Direct observation of Ge and Si ordering at the Si/B/GexSi1-x(111) interface by anomalous x-ray diffraction.
    Tweet DJ; Akimoto K; Tatsumi T; Hirosawa I; Mizuki J; Matsui J
    Phys Rev Lett; 1992 Oct; 69(15):2236-2239. PubMed ID: 10046433
    [No Abstract]   [Full Text] [Related]  

  • 6. Observation of confined electronic states in GexSi1-xSi strained-layer superlattices.
    Cerdeira F; Pinczuk A; Bean JC
    Phys Rev B Condens Matter; 1985 Jan; 31(2):1202-1204. PubMed ID: 9935888
    [No Abstract]   [Full Text] [Related]  

  • 7. Quantum-confined photoluminescence from Ge(1-x)Sn(x)/Ge superlattices on Ge-buffered Si(001) substrates.
    Chang GE; Hsieh WY; Chen JZ; Cheng HH
    Opt Lett; 2013 Sep; 38(18):3485-7. PubMed ID: 24104794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole-allowed direct band gap silicon superlattices.
    Oh YJ; Lee IH; Kim S; Lee J; Chang KJ
    Sci Rep; 2015 Dec; 5():18086. PubMed ID: 26656482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroreflectance spectroscopy of Si-GexSi1-x quantum-well structures.
    Pearsall TP; Pollak FH; Bean JC; Hull R
    Phys Rev B Condens Matter; 1986 May; 33(10):6821-6830. PubMed ID: 9938007
    [No Abstract]   [Full Text] [Related]  

  • 10. Scaling of surface roughness in a heterogeneous film growth system: GexSi1-x on Si.
    Mou CY; Hsu JW
    Phys Rev B Condens Matter; 1996 Mar; 53(12):R7610-R7613. PubMed ID: 9982279
    [No Abstract]   [Full Text] [Related]  

  • 11. New source of dislocations in GexSi1-x/Si(100) strained epitaxial layers.
    Eaglesham DJ; Maher DM; Kvam EP; Bean JC; Humphreys CJ
    Phys Rev Lett; 1989 Jan; 62(2):187-190. PubMed ID: 10039945
    [No Abstract]   [Full Text] [Related]  

  • 12. Experimental study of diffusion and segregation in a Si-(GexSi1-x) heterostructure.
    Hu SM; Ahlgren DC; Ronsheim PA; Chu JO
    Phys Rev Lett; 1991 Sep; 67(11):1450-1453. PubMed ID: 10044150
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermal relaxation of metastable strained-layer GexSi1-x/Si epitaxy.
    Fiory AT; Bean JC; Hull R; Nakahara S
    Phys Rev B Condens Matter; 1985 Mar; 31(6):4063-4065. PubMed ID: 9936322
    [No Abstract]   [Full Text] [Related]  

  • 14. Strain-modulated Ge superlattices.
    Virgilio M; Grosso G
    J Phys Condens Matter; 2015 Dec; 27(48):485305. PubMed ID: 26569138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerically stable Hermitian secular equation for the envelope-function approximation for superlattices.
    Szmulowicz F
    Phys Rev B Condens Matter; 1996 Oct; 54(16):11539-11547. PubMed ID: 9984942
    [No Abstract]   [Full Text] [Related]  

  • 16. Envelope-function approximation for nonrectangular Hg1-xCdxTe superlattices.
    Hass KC; Kirill DJ
    Phys Rev B Condens Matter; 1990 Oct; 42(11):7042-7049. PubMed ID: 9994828
    [No Abstract]   [Full Text] [Related]  

  • 17. Indirect band gap of coherently strained GexSi1-x bulk alloys on <001> silicon substrates.
    People R
    Phys Rev B Condens Matter; 1985 Jul; 32(2):1405-1408. PubMed ID: 9937177
    [No Abstract]   [Full Text] [Related]  

  • 18. Theoretical study of nitride short period superlattices.
    Gorczyca I; Suski T; Christensen NE; Svane A
    J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition-dependent band gaps and indirect-direct band gap transitions of group-IV semiconductor alloys.
    Zhu Z; Xiao J; Sun H; Hu Y; Cao R; Wang Y; Zhao L; Zhuang J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21605-10. PubMed ID: 26222374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conduction-band minimum of (GaAs)1/(AlAs)1 superlattices: Relationship to X minimum of AlAs.
    Ge W; Schmidt WD; Sturge MD; Pfeiffer LN; West KW
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3432-3435. PubMed ID: 9999961
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.