These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 9941743)

  • 1. Thermoelectric power and elastoresistance of TaSe3.
    Fisher B
    Phys Rev B Condens Matter; 1987 Feb; 35(6):2687-2689. PubMed ID: 9941743
    [No Abstract]   [Full Text] [Related]  

  • 2. Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: prospects of interconnect applications.
    Stolyarov MA; Liu G; Bloodgood MA; Aytan E; Jiang C; Samnakay R; Salguero TT; Nika DL; Rumyantsev SL; Shur MS; Bozhilov KN; Balandin AA
    Nanoscale; 2016 Aug; 8(34):15774-82. PubMed ID: 27531559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution.
    Lyeo HK; Khajetoorians AA; Shi L; Pipe KP; Ram RJ; Shakouri A; Shih CK
    Science; 2004 Feb; 303(5659):816-8. PubMed ID: 14764872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface.
    Ishibe T; Tomeda A; Watanabe K; Kamakura Y; Mori N; Naruse N; Mera Y; Yamashita Y; Nakamura Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37709-37716. PubMed ID: 30346133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermoelectric power in dual-gated bilayer graphene.
    Wang CR; Lu WS; Hao L; Lee WL; Lee TK; Lin F; Cheng IC; Chen JZ
    Phys Rev Lett; 2011 Oct; 107(18):186602. PubMed ID: 22107659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.
    García-Cañadas J; Adkins NJ; McCain S; Hauptstein B; Brew A; Jarvis DJ; Min G
    ACS Comb Sci; 2016 Jun; 18(6):314-9. PubMed ID: 27186664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the B1g and B2g components of the elastoresistivity tensor for tetragonal materials via transverse resistivity configurations.
    Shapiro MC; Hristov AT; Palmstrom JC; Chu JH; Fisher IR
    Rev Sci Instrum; 2016 Jun; 87(6):063902. PubMed ID: 27370465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS
    Dimple ; Jena N; De Sarkar A
    J Phys Condens Matter; 2017 Jun; 29(22):225501. PubMed ID: 28474608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric Power Factor Limit of a 1D Nanowire.
    Chen IJ; Burke A; Svilans A; Linke H; Thelander C
    Phys Rev Lett; 2018 Apr; 120(17):177703. PubMed ID: 29756845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Development of Thermoelectric Polymers and Composites.
    Yao H; Fan Z; Cheng H; Guan X; Wang C; Sun K; Ouyang J
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700727. PubMed ID: 29356234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-Learning-Assisted Development and Theoretical Consideration for the Al
    Hou Z; Takagiwa Y; Shinohara Y; Xu Y; Tsuda K
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11545-11554. PubMed ID: 30882196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance thermoelectric materials based on ternary TiO
    Erden F; Li H; Wang X; Wang F; He C
    Phys Chem Chem Phys; 2018 Apr; 20(14):9411-9418. PubMed ID: 29565069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thermoelectric power of Al-0.99 wt.% Fe alloys in the AC magnetic field.
    Lan Q; Zhang J; Liu X; Le Q; Yin S; Liu Y; Cui J
    J Phys Condens Matter; 2017 Apr; 29(15):155101. PubMed ID: 28288004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.
    Abadlia L; Gasser F; Khalouk K; Mayoufi M; Gasser JG
    Rev Sci Instrum; 2014 Sep; 85(9):095121. PubMed ID: 25273786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics.
    Dun C; Hewitt CA; Huang H; Xu J; Montgomery DS; Nie W; Jiang Q; Carroll DL
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7054-9. PubMed ID: 25798653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost-efficiency trade-off and the design of thermoelectric power generators.
    Yazawa K; Shakouri A
    Environ Sci Technol; 2011 Sep; 45(17):7548-53. PubMed ID: 21793542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport properties of TaSe3.
    Fisher B; Fibich M
    Phys Rev B Condens Matter; 1988 Feb; 37(6):2820-2825. PubMed ID: 9944856
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of uniaxial stress on the transport properties of TaSe3.
    Tritt TM; Stillwell EP; Skove MJ
    Phys Rev B Condens Matter; 1986 Nov; 34(10):6799-6803. PubMed ID: 9939326
    [No Abstract]   [Full Text] [Related]  

  • 19. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric efficiency of (1 - x)(GeTe) x(Bi2Se0.2Te2.8) and implementation into highly performing thermoelectric power generators.
    Koenig J; Winkler M; Dankwort T; Hansen AL; Pernau HF; Duppel V; Jaegle M; Bartholomé K; Kienle L; Bensch W
    Dalton Trans; 2015 Feb; 44(6):2835-43. PubMed ID: 25559337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.