These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9941894)

  • 1. Acoustical polaron in three dimensions: The impedance function.
    Peeters FM; Devreese JT
    Phys Rev B Condens Matter; 1987 Mar; 35(8):3745-3752. PubMed ID: 9941894
    [No Abstract]   [Full Text] [Related]  

  • 2. Acoustical polaron in three dimensions: The ground-state energy and the self-trapping transition.
    Peeters FM; Devreese JT
    Phys Rev B Condens Matter; 1985 Sep; 32(6):3515-3521. PubMed ID: 9937495
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices.
    Thompson SC; LoPresti JL
    J Acoust Soc Am; 2008 Mar; 123(3):1364-70. PubMed ID: 18345825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory acoustical impedance: a new technique to measure airway response during bronchial inhalation challenges.
    Feihl F; Badan M; Depeursinge F; Depeursinge C; Leuenberger P; Pécoud A; Perret C
    Ann Allergy; 1988 Oct; 61(4):263-8. PubMed ID: 3177967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustical impedance defined by wave-function solutions of the reduced Webster equation.
    Forbes BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016627. PubMed ID: 16090127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of the acoustical impedance profile of a multilayer medium.
    Lifshitz I; Pedersen PC; Lewin PA
    Ultrason Imaging; 1992 Jan; 14(1):40-68. PubMed ID: 1549896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibron-polaron in alpha-helices. I. Single-vibron states.
    Falvo C; Pouthier V
    J Chem Phys; 2005 Nov; 123(18):184709. PubMed ID: 16292923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy of the Fröhlich polaron in two and three dimensions.
    Titantah JT; Pierleoni C; Ciuchi S
    Phys Rev Lett; 2001 Nov; 87(20):206406. PubMed ID: 11690499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio Lattice Results for Fermi Polarons in Two Dimensions.
    Bour S; Lee D; Hammer HW; Meißner UG
    Phys Rev Lett; 2015 Oct; 115(18):185301. PubMed ID: 26565472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 Apr; 137(4):1877-87. PubMed ID: 25920840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers.
    Baresch D; Thomas JL; Marchiano R
    Phys Rev Lett; 2016 Jan; 116(2):024301. PubMed ID: 26824541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme electron polaron spatial delocalization in π-conjugated materials.
    Rawson J; Angiolillo PJ; Therien MJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13779-83. PubMed ID: 26512097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models.
    Monteghetti F; Matignon D; Piot E; Pascal L
    J Acoust Soc Am; 2016 Sep; 140(3):1663. PubMed ID: 27914439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models.
    Falvo C
    J Chem Phys; 2018 Feb; 148(7):074103. PubMed ID: 29471642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polaron-to-polaron transitions in the radio-frequency spectrum of a quasi-two-dimensional Fermi gas.
    Zhang Y; Ong W; Arakelyan I; Thomas JE
    Phys Rev Lett; 2012 Jun; 108(23):235302. PubMed ID: 23003968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polaron dynamics in anisotropic Holstein-Peierls systems.
    Ribeiro Junior LA; Stafström S
    Phys Chem Chem Phys; 2017 Feb; 19(5):4078-4084. PubMed ID: 28111670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polaron stability in molecular semiconductors: theoretical insight into the impact of the temperature, electric field and the system dimensionality.
    Ribeiro Junior LA; Stafström S
    Phys Chem Chem Phys; 2015 Apr; 17(14):8973-82. PubMed ID: 25746667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements.
    Panneton R
    J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests).
    Horoshenkov KV; Khan A; Bécot FX; Jaouen L; Sgard F; Renault A; Amirouche N; Pompoli F; Prodi N; Bonfiglio P; Pispola G; Asdrubali F; Hübelt J; Atalla N; Amédin CK; Lauriks W; Boeckx L
    J Acoust Soc Am; 2007 Jul; 122(1):345-53. PubMed ID: 17614494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.