These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9942774)
21. Doping-dependent photon scattering resonance in the model high-temperature superconductor HgBa2CuO4+δ revealed by Raman scattering and optical ellipsometry. Li Y; Le Tacon M; Matiks Y; Boris AV; Loew T; Lin CT; Chen L; Chan MK; Dorow C; Ji L; Barišić N; Zhao X; Greven M; Keimer B Phys Rev Lett; 2013 Nov; 111(18):187001. PubMed ID: 24237551 [TBL] [Abstract][Full Text] [Related]
22. Observation of time evolution from resonant Raman scattering to excitonic-polariton luminescence in ZnTe. Oka Y; Nakamura K; Fujisaki H Phys Rev Lett; 1986 Dec; 57(22):2857-2860. PubMed ID: 10033884 [No Abstract] [Full Text] [Related]
23. Excitonic model for second-order resonant Raman scattering. García-Cristóbal A; Cantarero A; Trallero-Giner C; Cardona M Phys Rev B Condens Matter; 1994 May; 49(19):13430-13445. PubMed ID: 10010279 [No Abstract] [Full Text] [Related]
24. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions. Webster GT; McNaughton D; Wood BR J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036 [TBL] [Abstract][Full Text] [Related]
25. Determination of the exciton binding energy in single-walled carbon nanotubes. Wang Z; Pedrosa H; Krauss T; Rothberg L Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895 [TBL] [Abstract][Full Text] [Related]
26. Plasmon transmission through excitonic subwavelength gaps. Sukharev M; Nitzan A J Chem Phys; 2016 Apr; 144(14):144703. PubMed ID: 27083741 [TBL] [Abstract][Full Text] [Related]
28. Efficient long-range collisional energy transfer between the E0(g)(+)(3P2) and D0(u)(+)(3P2) ion-pair states of I2, induced by H2O, observed using high-resolution Fourier transform emission spectroscopy. Ridley T; Lawley KP; Donovan RJ; Ross AJ J Chem Phys; 2011 Sep; 135(11):114302. PubMed ID: 21950857 [TBL] [Abstract][Full Text] [Related]
29. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518 [TBL] [Abstract][Full Text] [Related]
30. Quantum confinement effects above the fundamental band gap in HgTe/Hg0.3Cd0.7Te heterostructures studied by resonant Raman scattering near the E1 edge. Atzmüller R; Rösch M; Schaack G; Becker CR Phys Rev B Condens Matter; 1996 Dec; 54(23):16907-16918. PubMed ID: 9985819 [No Abstract] [Full Text] [Related]
32. Resonant two-magnon Raman scattering and photoexcited States in two-dimensional mott insulators. Tohyama T; Onodera H; Tsutsui K; Maekawa S Phys Rev Lett; 2002 Dec; 89(25):257405. PubMed ID: 12484919 [TBL] [Abstract][Full Text] [Related]
33. Auger resonant Raman scattering in itinerant electron systems: continuum excitation in Cu. Föhlisch A; Karis O; Weinelt M; Hasselström J; Nilsson A; Mårtensson N Phys Rev Lett; 2002 Jan; 88(2):027601. PubMed ID: 11801036 [TBL] [Abstract][Full Text] [Related]
34. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy. Liu P; Chulhai DV; Jensen L ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555 [TBL] [Abstract][Full Text] [Related]
35. (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. Zhang D; Yang J; Li M; Li Y ACS Nano; 2016 Dec; 10(12):10789-10797. PubMed ID: 28024329 [TBL] [Abstract][Full Text] [Related]
36. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer. Ottiger P; Leutwyler S J Chem Phys; 2012 Nov; 137(20):204303. PubMed ID: 23205999 [TBL] [Abstract][Full Text] [Related]
38. On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials. Yuan B; Humphrey VF; Wen J; Wen X Ultrasonics; 2013 Sep; 53(7):1332-43. PubMed ID: 23659875 [TBL] [Abstract][Full Text] [Related]
39. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging. Zhang Y; Voronine DV; Qiu S; Sinyukov AM; Hamilton M; Liege Z; Sokolov AV; Zhang Z; Scully MO Sci Rep; 2016 May; 6():25788. PubMed ID: 27220882 [TBL] [Abstract][Full Text] [Related]
40. Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles. Ding Y; Cong T; Chu X; Jia Y; Hong X; Liu Y Anal Bioanal Chem; 2016 Jul; 408(18):5013-9. PubMed ID: 27173389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]