These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 9942967)
1. Energy-band equation for a general periodic potential. Badralexe E; Freeman AJ Phys Rev B Condens Matter; 1987 Jul; 36(3):1378-1388. PubMed ID: 9942967 [No Abstract] [Full Text] [Related]
2. Comment on "Energy-band equation for a general periodic potential". Brown RG; Ciftan M Phys Rev B Condens Matter; 1989 May; 39(14):10415-10419. PubMed ID: 9947838 [No Abstract] [Full Text] [Related]
3. Reply to "Comment on 'Energy-band equation for a general periodic potential' ". Badralexe E; Freeman AJ Phys Rev B Condens Matter; 1989 May; 39(14):10420-10421. PubMed ID: 9947839 [No Abstract] [Full Text] [Related]
4. Comment on "Energy-band equation for a general periodic potential". van Ek J ; Lodder A Phys Rev B Condens Matter; 1989 Jul; 40(3):1979-1980. PubMed ID: 9992065 [No Abstract] [Full Text] [Related]
5. Reply to "Comment on 'Energy-band equation for a general periodic potential' ". Badralexe E; Freeman AJ Phys Rev B Condens Matter; 1989 Jul; 40(3):1981-1983. PubMed ID: 9992066 [No Abstract] [Full Text] [Related]
6. Dark gap solitons in exciton-polariton condensates in a periodic potential. Cheng SC; Chen TW Phys Rev E; 2018 Mar; 97(3-1):032212. PubMed ID: 29776165 [TBL] [Abstract][Full Text] [Related]
7. Lamé polynomials, hyperelliptic reductions and Lamé band structure. Maier RS Philos Trans A Math Phys Eng Sci; 2008 Mar; 366(1867):1115-53. PubMed ID: 17588866 [TBL] [Abstract][Full Text] [Related]
8. Tunable band-gap structure and gap solitons in the generalized Gross-Pitaevskii equation with a periodic potential. Huang C; Dong L Sci Rep; 2018 Jan; 8(1):1374. PubMed ID: 29358596 [TBL] [Abstract][Full Text] [Related]
9. Vortex families near a spectral edge in the Gross-Pitaevskii equation with a two-dimensional periodic potential. Dohnal T; Pelinovsky D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026605. PubMed ID: 22463347 [TBL] [Abstract][Full Text] [Related]
10. Tight-binding approach to overdamped Brownian motion on a multidimensional tilted periodic potential. Challis KJ; Jack MW Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052102. PubMed ID: 23767482 [TBL] [Abstract][Full Text] [Related]
11. Bifurcations and stability of gap solitons in periodic potentials. Pelinovsky DE; Sukhorukov AA; Kivshar YS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036618. PubMed ID: 15524667 [TBL] [Abstract][Full Text] [Related]
12. Equation-of-motion coupled-cluster study on exciton states of polyethylene with periodic boundary condition. Katagiri H J Chem Phys; 2005 Jun; 122(22):224901. PubMed ID: 15974710 [TBL] [Abstract][Full Text] [Related]
13. Canonical Hamiltonian formulation of the nonlinear Schrödinger equation in a one-dimensional, periodic Kerr medium. Pereira S; Sipe JE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046601. PubMed ID: 12006041 [TBL] [Abstract][Full Text] [Related]
14. Multi-mass-spring model and energy transmission of one-dimensional periodic structures. Cheng ZB; Shi ZF IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):739-46. PubMed ID: 24802559 [TBL] [Abstract][Full Text] [Related]
15. Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability. Delcey L; Haraguss M Philos Trans A Math Phys Eng Sci; 2018 Apr; 376(2117):. PubMed ID: 29507173 [TBL] [Abstract][Full Text] [Related]
16. Generalized cable equation model for myelinated nerve fiber. Einziger PD; Livshitz LM; Mizrahi J IEEE Trans Biomed Eng; 2005 Oct; 52(10):1632-42. PubMed ID: 16235649 [TBL] [Abstract][Full Text] [Related]
17. Molecular response properties from a Hermitian eigenvalue equation for a time-periodic Hamiltonian. Pawłowski F; Olsen J; Jørgensen P J Chem Phys; 2015 Mar; 142(11):114109. PubMed ID: 25796233 [TBL] [Abstract][Full Text] [Related]
18. Emerging zero modes for graphene in a periodic potential. Brey L; Fertig HA Phys Rev Lett; 2009 Jul; 103(4):046809. PubMed ID: 19659387 [TBL] [Abstract][Full Text] [Related]
19. Laplace-transformed diagonal Dyson correction to quasiparticle energies in periodic systems. Pino R; Scuseria GE J Chem Phys; 2004 Aug; 121(6):2553-7. PubMed ID: 15281852 [TBL] [Abstract][Full Text] [Related]
20. Topological properties of adiabatically varied Floquet systems. Dana I Phys Rev E; 2017 Aug; 96(2-1):022216. PubMed ID: 28950502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]