These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9944451)

  • 1. Silicon donor states in heavily doped thin GaAs-AlAs(001) superlattices.
    Nelson JS; Fong CY; Batra IP; Pickett WE; Klein BM
    Phys Rev B Condens Matter; 1988 Jun; 37(17):10203-10211. PubMed ID: 9944451
    [No Abstract]   [Full Text] [Related]  

  • 2. Pressure-induced Hall-effect spectroscopy of silicon DX states in planar doped GaAs-AlAs superlattices.
    Sellitto P; Sicart J; Robert JL; Planel R
    Phys Rev B Condens Matter; 1995 Jun; 51(23):16778-16784. PubMed ID: 9978685
    [No Abstract]   [Full Text] [Related]  

  • 3. Electronic states in GaAs-AlAs lateral-surface superlattices produced by deposition of AlAs and GaAs fractional layers on (001) vicinal GaAs substrates.
    Sun H
    Phys Rev B Condens Matter; 1992 Nov; 46(19):12371-12376. PubMed ID: 10003151
    [No Abstract]   [Full Text] [Related]  

  • 4. Layer ordering and faulting in (GaAs)n/(AlAs)n ultrashort-period superlattices.
    Li JH; Moss SC; Zhang Y; Mascarenhas A; Pfeiffer LN; West KW; Ge WK; Bai J
    Phys Rev Lett; 2003 Sep; 91(10):106103. PubMed ID: 14525495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic properties of the donor states under two-dimensional-conductor and quantum-wire configurations in heavily and orderly doped (GaAs)-(AlAs).
    Fong CY; Yang LH; Nelson JS; Esaki L
    Phys Rev B Condens Matter; 1990 May; 41(15):10667-10673. PubMed ID: 9993475
    [No Abstract]   [Full Text] [Related]  

  • 6. Self-consistent study of confined states in thin GaAs-AlAs superlattices.
    Ciraci S; Batra IP
    Phys Rev B Condens Matter; 1987 Jul; 36(2):1225-1232. PubMed ID: 9942931
    [No Abstract]   [Full Text] [Related]  

  • 7. Self-oscillations of domains in doped GaAs-AlAs superlattices.
    Kastrup J; Klann R; Grahn HT; Ploog K; Bonilla LL; Galán J; Kindelan M; Moscoso M; Merlin R
    Phys Rev B Condens Matter; 1995 Nov; 52(19):13761-13764. PubMed ID: 9980583
    [No Abstract]   [Full Text] [Related]  

  • 8. Formation times of electric-field domains in doped GaAs-AlAs superlattices.
    Kastrup J; Prengel F; Grahn HT; Ploog K; Schöll E
    Phys Rev B Condens Matter; 1996 Jan; 53(3):1502-1506. PubMed ID: 9983612
    [No Abstract]   [Full Text] [Related]  

  • 9. Interband transitions of thin-layer GaAs/AlAs superlattices.
    Garriga M; Cardona M; Christensen NE; Lautenschlager P; Isu T; Ploog K
    Phys Rev B Condens Matter; 1987 Aug; 36(6):3254-3258. PubMed ID: 9943236
    [No Abstract]   [Full Text] [Related]  

  • 10. Low-temperature photoluminescence of disordered thin-layer GaAs/AlAs superlattices: Experiment.
    Zhang YA; Strozier JA; Ignatiev A
    Phys Rev B Condens Matter; 1996 Mar; 53(11):7426-7433. PubMed ID: 9982191
    [No Abstract]   [Full Text] [Related]  

  • 11. Resonance Raman scattering in GaAs/AlAs thin-layer superlattices under high pressure.
    Holtz M; Venkateswaran UD; Syassen K; Ploog K
    Phys Rev B Condens Matter; 1989 Apr; 39(12):8458-8463. PubMed ID: 9947558
    [No Abstract]   [Full Text] [Related]  

  • 12. Folded-acoustic phonons in GaAs/AlAs thin-layer superlattices under high pressure.
    Holtz M; Syassen K; Ploog K
    Phys Rev B Condens Matter; 1989 Aug; 40(5):2988-2991. PubMed ID: 9992232
    [No Abstract]   [Full Text] [Related]  

  • 13. Low-temperature photoluminescence of disordered thin-layer GaAs/AlAs superlattices: Kinetic model.
    Zhang YA; Strozier JA; Ignatiev A
    Phys Rev B Condens Matter; 1996 Mar; 53(11):7434-7441. PubMed ID: 9982192
    [No Abstract]   [Full Text] [Related]  

  • 14. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures.
    Jiang M; Xiao HY; Peng SM; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2018 Jan; 8(1):2012. PubMed ID: 29386543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual optical nonlinearity in GaAs-AlAs superlattices.
    Adderley BM; Morrison I; Jaros M
    Opt Lett; 1991 Dec; 16(24):1927-9. PubMed ID: 19784183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation.
    Jooshesh A; Fesharaki F; Bahrami-Yekta V; Mahtab M; Tiedje T; Darcie TE; Gordon R
    Opt Express; 2017 Sep; 25(18):22140-22148. PubMed ID: 29041502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conduction-band minimum of (GaAs)1/(AlAs)1 superlattices: Relationship to X minimum of AlAs.
    Ge W; Schmidt WD; Sturge MD; Pfeiffer LN; West KW
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3432-3435. PubMed ID: 9999961
    [No Abstract]   [Full Text] [Related]  

  • 18. Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices with single-monolayer AlAs barriers.
    Schneider H; Fischer A; Ploog K
    Phys Rev B Condens Matter; 1992 Mar; 45(11):6329-6332. PubMed ID: 10000392
    [No Abstract]   [Full Text] [Related]  

  • 19. Exciton localization in corrugated GaAs/AlAs superlattices grown on (311) GaAs substrates.
    Xu ZY; Yuan ZL; Xu JZ; Zheng BZ; Wang BS; Jiang DS; Nötzel R; Ploog K
    Phys Rev B Condens Matter; 1995 Mar; 51(11):7024-7028. PubMed ID: 9977260
    [No Abstract]   [Full Text] [Related]  

  • 20. Si diffusion in GaAs and Si-induced interdiffusion in GaAs/AlAs superlattices.
    Chen B; Zhang Q; Bernholc J
    Phys Rev B Condens Matter; 1994 Jan; 49(4):2985-2988. PubMed ID: 10011148
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.