These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 9944755)

  • 1. Thermoelectric power and superconducting properties of Y1Ba.
    Lee SC; Lee JH; Suh BJ; Moon SH; Lim CJ; Khim ZG
    Phys Rev B Condens Matter; 1988 Feb; 37(4):2285-2288. PubMed ID: 9944755
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of compositional variation and annealing in oxygen on superconducting properties of Y1Ba.
    Panson AJ; Braginski AI; Gavaler JR; Hulm JK; Janocko MA; Pohl HC; Stewart AM; Talvacchio J; Wagner GR
    Phys Rev B Condens Matter; 1987 Jun; 35(16):8774-8777. PubMed ID: 9941249
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermoelectric power of superconducting fullerenes.
    Morelli DT
    Phys Rev B Condens Matter; 1994 Jan; 49(1):655-657. PubMed ID: 10009334
    [No Abstract]   [Full Text] [Related]  

  • 4. Hall and thermoelectric-power coefficients of superconducting Nd2CuO4-xFx.
    Sugiyama J; Matsuura K; Kosuge M; Yamauchi H; Tanaka S
    Phys Rev B Condens Matter; 1992 May; 45(17):9951-9957. PubMed ID: 10000886
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic field dependence of the thermoelectric power of superconducting Bi-Sr-Ca-Cu-O.
    Gridin VV; Pernambuco-Wise P; Trendall CG; Datars WR; Garrett JD
    Phys Rev B Condens Matter; 1989 Nov; 40(13):8814-8817. PubMed ID: 9991362
    [No Abstract]   [Full Text] [Related]  

  • 6. Order-parameter-fluctuation effects on the thermoelectric power above the superconducting transition in polycrystalline YBa2Cu3O7- delta.
    Cabeza O; Pomar A; Díaz A; Torrón C; Veira JA; Maza J; Vidal F
    Phys Rev B Condens Matter; 1993 Mar; 47(9):5332-5350. PubMed ID: 10006700
    [No Abstract]   [Full Text] [Related]  

  • 7. Thermoelectric power of the (Eu,Ce)4(Ba,Eu)4Cu6Oy phase and the T* phase: Comparison between superconducting and nonsuperconducting compounds.
    Ikegawa S; Wada T; Yamashita T; Ichinose A; Matsuura K; Kubo K; Yamauchi H; Tanaka S
    Phys Rev B Condens Matter; 1991 May; 43(13):11508-11511. PubMed ID: 9996914
    [No Abstract]   [Full Text] [Related]  

  • 8. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.
    García-Cañadas J; Adkins NJ; McCain S; Hauptstein B; Brew A; Jarvis DJ; Min G
    ACS Comb Sci; 2016 Jun; 18(6):314-9. PubMed ID: 27186664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Development of Thermoelectric Polymers and Composites.
    Yao H; Fan Z; Cheng H; Guan X; Wang C; Sun K; Ouyang J
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700727. PubMed ID: 29356234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS
    Dimple ; Jena N; De Sarkar A
    J Phys Condens Matter; 2017 Jun; 29(22):225501. PubMed ID: 28474608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution.
    Lyeo HK; Khajetoorians AA; Shi L; Pipe KP; Ram RJ; Shakouri A; Shih CK
    Science; 2004 Feb; 303(5659):816-8. PubMed ID: 14764872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric Power Factor Limit of a 1D Nanowire.
    Chen IJ; Burke A; Svilans A; Linke H; Thelander C
    Phys Rev Lett; 2018 Apr; 120(17):177703. PubMed ID: 29756845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface.
    Ishibe T; Tomeda A; Watanabe K; Kamakura Y; Mori N; Naruse N; Mera Y; Yamashita Y; Nakamura Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37709-37716. PubMed ID: 30346133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermoelectric power in dual-gated bilayer graphene.
    Wang CR; Lu WS; Hao L; Lee WL; Lee TK; Lin F; Cheng IC; Chen JZ
    Phys Rev Lett; 2011 Oct; 107(18):186602. PubMed ID: 22107659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric Properties of SnS with Na-Doping.
    Zhou B; Li S; Li W; Li J; Zhang X; Lin S; Chen Z; Pei Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34033-34041. PubMed ID: 28895395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learning-Assisted Development and Theoretical Consideration for the Al
    Hou Z; Takagiwa Y; Shinohara Y; Xu Y; Tsuda K
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11545-11554. PubMed ID: 30882196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering.
    Wu L; Yang J; Zhang T; Wang S; Wei P; Zhang W; Chen L; Yang J
    J Phys Condens Matter; 2016 Mar; 28(8):085801. PubMed ID: 26829207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration.
    Yu C; Ryu Y; Yin L; Yang H
    ACS Nano; 2011 Feb; 5(2):1297-303. PubMed ID: 21222461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks.
    Karttunen AJ; Fässler TF
    Chemphyschem; 2013 Jun; 14(9):1807-17. PubMed ID: 23609957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector.
    Pan Y; Tagliabue G; Eghlidi H; Höller C; Dröscher S; Hong G; Poulikakos D
    Sci Rep; 2016 Nov; 6():37564. PubMed ID: 27874075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.