These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9946483)

  • 1. Structural and electronic properties of bulk GaAs, bulk AlAs, and the (GaAs)1(AlAs)1 superlattice.
    Min BI; Massidda S; Freeman AJ
    Phys Rev B Condens Matter; 1988 Jul; 38(3):1970-1977. PubMed ID: 9946483
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures.
    Jiang M; Xiao HY; Peng SM; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2018 Jan; 8(1):2012. PubMed ID: 29386543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stacking periodicity on the electronic and optical properties of GaAs/AlAs superlattice: a first-principles study.
    Jiang M; Xiao HY; Peng SM; Qiao L; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2020 Mar; 10(1):4862. PubMed ID: 32184414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility.
    Jiang M; Xiao H; Peng S; Qiao L; Yang G; Liu Z; Zu X
    Nanoscale Res Lett; 2018 Sep; 13(1):301. PubMed ID: 30259329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs)
    Liu QL; Zhao ZY; Yi JH; Zhang ZY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between the electronic dielectric functions of a GaAs/AlAs superlattice and its bulk components by spectroscopic ellipsometry using core levels.
    Günther O; Janowitz C; Jungk G; Jenichen B; Hey R; Däweritz L; Ploog K
    Phys Rev B Condens Matter; 1995 Jul; 52(4):2599-2609. PubMed ID: 9981327
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural Evolution During Formation and Filling of Self-patterned Nanoholes on GaAs (100) Surfaces.
    Sablon KA; Wang ZhM; Salamo GJ; Zhou L; Smith DJ
    Nanoscale Res Lett; 2008 Dec; 3(12):530-3. PubMed ID: 20596345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correspondence between the dependence of frequencies and intensities of GaAs and AlAs longitudinal-optical modes on the photon energy in a thin-layer GaAs-AlAs superlattice.
    Gridin VV; Beserman R; Morkoç H
    Phys Rev B Condens Matter; 1989 Jan; 39(3):1703-1707. PubMed ID: 9948386
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoemission study of the electronic structure of a (GaAs)2/(AlAs)2 superlattice.
    Cai YQ; Riley JD; Leckey RC; Usher B; Fraxedas J; Ley L
    Phys Rev B Condens Matter; 1991 Aug; 44(8):3787-3792. PubMed ID: 10000006
    [No Abstract]   [Full Text] [Related]  

  • 10. Electronic and vibronic structure of the (GaAs)1(AlAs)1 superlattice.
    Cardona M; Suemoto T; Christensen NE; Isu T; Ploog K
    Phys Rev B Condens Matter; 1987 Oct; 36(11):5906-5913. PubMed ID: 9942268
    [No Abstract]   [Full Text] [Related]  

  • 11. Thermal conductivity of GaAs/AlAs distributed Bragg reflectors in semiconductor disk laser: comparison of molecular dynamics simulation and analytic methods.
    Zhang P; Jiang M; Zhue R; Zhang D; Song Y
    Appl Opt; 2017 May; 56(15):4537-4542. PubMed ID: 29047886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic states in GaAs-AlAs lateral-surface superlattices produced by deposition of AlAs and GaAs fractional layers on (001) vicinal GaAs substrates.
    Sun H
    Phys Rev B Condens Matter; 1992 Nov; 46(19):12371-12376. PubMed ID: 10003151
    [No Abstract]   [Full Text] [Related]  

  • 13. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation.
    Jooshesh A; Fesharaki F; Bahrami-Yekta V; Mahtab M; Tiedje T; Darcie TE; Gordon R
    Opt Express; 2017 Sep; 25(18):22140-22148. PubMed ID: 29041502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal phase induced bandgap modifications in AlAs nanowires probed by resonant Raman spectroscopy.
    Funk S; Li A; Ercolani D; Gemmi M; Sorba L; Zardo I
    ACS Nano; 2013 Feb; 7(2):1400-7. PubMed ID: 23281738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon properties of GaAs/AlAs superlattice grown along the.
    Popovic ZV; Cardona M; Richter E; Strauch D; Tapfer L; Ploog K
    Phys Rev B Condens Matter; 1989 Aug; 40(5):3040-3050. PubMed ID: 9992239
    [No Abstract]   [Full Text] [Related]  

  • 16. Heterogeneous integration of epitaxial Ge on Si using AlAs/GaAs buffer architecture: suitability for low-power fin field-effect transistors.
    Hudait MK; Clavel M; Goley P; Jain N; Zhu Y
    Sci Rep; 2014 Nov; 4():6964. PubMed ID: 25376723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetotransport Properties of Epitaxial Ge/AlAs Heterostructures Integrated on GaAs and Silicon.
    Hudait MK; Clavel M; Goley PS; Xie Y; Heremans JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22315-21. PubMed ID: 26413844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-consistent energy bands and formation energy of the (GaAs)1(AlAs)1(001) superlattice.
    Bylander DM; Kleinman L
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5280-5286. PubMed ID: 9940358
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of hydrostatic pressure on the optic and transverse-acoustic vibrations of a (012) GaAs/AlAs superlattice.
    Holtz M; Sauncy T; Ploog K; Tapfer L
    Phys Rev B Condens Matter; 1993 Oct; 48(15):11057-11061. PubMed ID: 10007411
    [No Abstract]   [Full Text] [Related]  

  • 20. Temperature dependence of the direct energy gap in a GaAs/AlAs superlattice.
    Humlek J; Luke F; Ploog K
    Phys Rev B Condens Matter; 1990 Aug; 42(5):2932-2936. PubMed ID: 9995784
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.