These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9946585)

  • 1. Interface kinetics of freezing and melting with a density change.
    Richards PM
    Phys Rev B Condens Matter; 1988 Aug; 38(4):2727-2739. PubMed ID: 9946585
    [No Abstract]   [Full Text] [Related]  

  • 2. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition dependence and the nature of endothermic freezing and exothermic melting.
    Ferrari C; Tombari E; Salvetti G; Johari GP
    J Chem Phys; 2007 Mar; 126(12):124506. PubMed ID: 17411143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.
    Gulam Razul MS; Hendry JG; Kusalik PG
    J Chem Phys; 2005 Nov; 123(20):204722. PubMed ID: 16351308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters.
    Kuo CL; Clancy P
    J Phys Chem B; 2005 Jul; 109(28):13743-54. PubMed ID: 16852722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing and melting line invariants of the Lennard-Jones system.
    Costigliola L; Schrøder TB; Dyre JC
    Phys Chem Chem Phys; 2016 Jun; 18(21):14678-90. PubMed ID: 27186598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of melting point depression for rare gas solids confined in carbon pores.
    Morishige K; Kataoka T
    J Chem Phys; 2015 Jul; 143(3):034707. PubMed ID: 26203042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate freezing and melting equations for the Lennard-Jones system.
    Khrapak SA; Morfill GE
    J Chem Phys; 2011 Mar; 134(9):094108. PubMed ID: 21384951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles.
    Back JM; McCue SW; Moroney TJ
    Sci Rep; 2014 Nov; 4():7066. PubMed ID: 25399918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting and freezing lines for a mixture of charged colloidal spheres with spindle-type phase diagram.
    Lorenz NJ; Palberg T
    J Chem Phys; 2010 Sep; 133(10):104501. PubMed ID: 20849172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line.
    Benjamin R; Horbach J
    J Chem Phys; 2015 Jul; 143(1):014702. PubMed ID: 26156487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing.
    Haymet AD
    Science; 1987 May; 236(4805):1076-80. PubMed ID: 17799663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics in thermo-responsive nanogel crystals undergoing melting.
    Joshi RG; Tata BV; Brijitta J
    J Chem Phys; 2013 Sep; 139(12):124901. PubMed ID: 24089798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting and freezing of argon in a granular packing of linear mesopore arrays.
    Schaefer C; Hofmann T; Wallacher D; Huber P; Knorr K
    Phys Rev Lett; 2008 May; 100(17):175701. PubMed ID: 18518308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.
    Li Y; Zang L; Jacobs DL; Zhao J; Yue X; Wang C
    Nat Commun; 2017 Feb; 8():14462. PubMed ID: 28194017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.