These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9946585)

  • 21. Kinetics of the γ-δ phase transition in energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
    Bowlan P; Henson BF; Smilowitz L; Levitas VI; Suvorova N; Oschwald D
    J Chem Phys; 2019 Feb; 150(6):064705. PubMed ID: 30769966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heating-induced freezing and melting transitions in charged colloids.
    Toyotama A; Yamanaka J
    Langmuir; 2011 Mar; 27(5):1569-72. PubMed ID: 21210635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melting inhibition and superheating of ice by an antifreeze glycopeptide.
    Knight CA; Devries AL
    Science; 1989 Aug; 245(4917):505-7. PubMed ID: 17750260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freezing and melting behavior of an octyl β-D-glucoside-water binary system--inhibitory effect of octyl β-D-glucoside on ice crystal formation.
    Ogawa S; Asakura K; Osanai S
    Phys Chem Chem Phys; 2012 Dec; 14(47):16312-20. PubMed ID: 23133837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freezing of fluids in disordered mesopores.
    Dvoyashkin M; Khokhlov A; Valiullin R; Kärger J
    J Chem Phys; 2008 Oct; 129(15):154702. PubMed ID: 19045213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scale effects in the latent heat of melting in nanopores.
    Shin JH; Parlange JY; Deinert MR
    J Chem Phys; 2013 Jul; 139(4):044701. PubMed ID: 23901997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing pore connectivity in random porous materials by scanning freezing and melting experiments.
    Kondrashova D; Reichenbach C; Valiullin R
    Langmuir; 2010 May; 26(9):6380-5. PubMed ID: 20095536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of freezing and melting.
    Pedersen UR; Costigliola L; Bailey NP; Schrøder TB; Dyre JC
    Nat Commun; 2016 Aug; 7():12386. PubMed ID: 27530064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluctuations during freezing and melting at the solid-liquid interface of xenon.
    Di Nardo S ; Bilgram JH
    Phys Rev B Condens Matter; 1995 Apr; 51(13):8012-8017. PubMed ID: 9977409
    [No Abstract]   [Full Text] [Related]  

  • 31. Comment on "Fluctuations during freezing and melting at the solid-liquid interface of xenon".
    Mesquita ON; Cummins HZ
    Phys Rev B Condens Matter; 1996 Jul; 54(2):1410-1411. PubMed ID: 9985415
    [No Abstract]   [Full Text] [Related]  

  • 32. Reply to "Comment on 'Fluctuations during freezing and melting at the solid-liquid interface of xenon' ".
    Di Nardo S ; Bilgram JH
    Phys Rev B Condens Matter; 1996 Jul; 54(2):1412-1413. PubMed ID: 9985416
    [No Abstract]   [Full Text] [Related]  

  • 33. The kinetics of the main phase transition of aqueous dispersions of phospholipids induced by pressure jump and monitored by Raman spectroscopy.
    Yager P; Peticolas WL
    Biochim Biophys Acta; 1982 Jun; 688(3):775-85. PubMed ID: 7115704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ice Melting to Release Reactants in Solution Syntheses.
    Wei H; Huang K; Zhang L; Ge B; Wang D; Lang J; Ma J; Wang D; Zhang S; Li Q; Zhang R; Hussain N; Lei M; Liu LM; Wu H
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3354-3359. PubMed ID: 29383795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection and characterization of structural changes in the hard-disk fluid under freezing and melting conditions.
    Moucka F; Nezbeda I
    Phys Rev Lett; 2005 Feb; 94(4):040601. PubMed ID: 15783545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing.
    Wharton DA; Block W
    Cryobiology; 1997 Mar; 34(2):114-21. PubMed ID: 9130384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic processes in supercooled monosaccharides upon melting: Application of dielectric spectroscopy in the mutarotation studies of D-ribose.
    Wlodarczyk P; Kaminski K; Haracz S; Dulski M; Paluch M; Ziolo J; Wygledowska-Kania M
    J Chem Phys; 2010 May; 132(19):195104. PubMed ID: 20499992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melting and freezing behaviors of prototype ionic liquids, 1-butyl-3-methylimidazolium bromide and its chloride, studied by using a nano-Watt differential scanning calorimeter.
    Nishikawa K; Wang S; Katayanagi H; Hayashi S; Hamaguchi HO; Koga Y; Tozaki K
    J Phys Chem B; 2007 May; 111(18):4894-900. PubMed ID: 17388425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melting and superheating of nanowires--a nanotube approach.
    Sar DK; Nanda KK
    Nanotechnology; 2010 May; 21(20):205701. PubMed ID: 20413835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.