These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9947072)

  • 1. Experimental surface electronic band structure of the (101-bar0) surfaces of CdS and CdSe.
    Magnusson KO; Flodström SA
    Phys Rev B Condens Matter; 1988 Sep; 38(9):6137-6142. PubMed ID: 9947072
    [No Abstract]   [Full Text] [Related]  

  • 2. Valence-band structure and final states in photoemission from (112-bar0) surfaces of CdS and CdSe.
    Magnusson KO; Flodström SA
    Phys Rev B Condens Matter; 1988 Jul; 38(2):1285-1290. PubMed ID: 9946388
    [No Abstract]   [Full Text] [Related]  

  • 3. Angle-resolved inverse photoelectron spectroscopy studies of CdTe(110), CdS(112-bar0), and CdSe(112-bar0).
    Magnusson KO; Karlsson UO; Straub D; Flodström SA; Himpsel FJ
    Phys Rev B Condens Matter; 1987 Oct; 36(12):6566-6573. PubMed ID: 9942368
    [No Abstract]   [Full Text] [Related]  

  • 4. Dissecting charge relaxation pathways in CdSe/CdS nanocrystals using femtosecond two-dimensional electronic spectroscopy.
    Jarrett JW; Yi C; Stoll T; Rehault J; Oriana A; Branchi F; Cerullo G; Knappenberger KL
    Nanoscale; 2017 Mar; 9(13):4572-4577. PubMed ID: 28321446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-consistent electronic-structure calculations of the (101-bar0) surfaces of the wurtzite compounds ZnO and CdS.
    Schröer P; Krüger P; Pollmann J
    Phys Rev B Condens Matter; 1994 Jun; 49(24):17092-17101. PubMed ID: 10010887
    [No Abstract]   [Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning band alignment by CdS layers using a SILAR method to enhance TiO2/CdS/CdSe quantum-dot solar-cell performance.
    Zhang B; Zheng J; Li X; Fang Y; Wang LW; Lin Y; Pan F
    Chem Commun (Camb); 2016 Apr; 52(33):5706-9. PubMed ID: 27040601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structures of the CdSe/CdS core-shell nanorods.
    Luo Y; Wang LW
    ACS Nano; 2010 Jan; 4(1):91-8. PubMed ID: 20043692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the atomic geometries of the (101-bar0) and (112-bar0) surfaces of CdSe by low-energy-electron diffraction and low-energy-positron diffraction.
    Horsky TN; Brandes GR; Canter KF; Duke CB; Paton A; Lessor DL; Kahn A; Horng SF; Stevens K; Stiles K; Mills AP
    Phys Rev B Condens Matter; 1992 Sep; 46(11):7011-7026. PubMed ID: 10002407
    [No Abstract]   [Full Text] [Related]  

  • 10. Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO
    Qiu Q; Wang P; Xu L; Wang D; Lin Y; Xie T
    Phys Chem Chem Phys; 2017 Jun; 19(24):15724-15733. PubMed ID: 28597886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spectral characteristics of CdSe/CdS nanocrystals].
    Liu SM; Xu Z; Wageh H; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):908-11. PubMed ID: 12914161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond band alignment: hole localization driven formation of three spatially separated long-lived exciton states in CdSe/CdS nanorods.
    Wu K; Rodríguez-Córdoba WE; Liu Z; Zhu H; Lian T
    ACS Nano; 2013 Aug; 7(8):7173-85. PubMed ID: 23829512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic Synthesis of CdS(core)-CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO
    Kitazono K; Akashi R; Fujiwara K; Akita A; Naya SI; Fujishima M; Tada H
    Chemphyschem; 2017 Oct; 18(20):2840-2845. PubMed ID: 28833927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of Mn ion in ZnSe passivation on electronic band structure for high efficiency CdS/CdSe quantum dot solar cells.
    Lu S; Peng S; Zhang Z; Deng Y; Qin T; Huang J; Ma F; Hou J; Cao G
    Dalton Trans; 2018 Jul; 47(29):9634-9642. PubMed ID: 29974101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure.
    Fan GC; Ren XL; Zhu C; Zhang JR; Zhu JJ
    Biosens Bioelectron; 2014 Sep; 59():45-53. PubMed ID: 24690561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-Phonon Coupling in CdSe/CdS Core/Shell Quantum Dots.
    Lin C; Gong K; Kelley DF; Kelley AM
    ACS Nano; 2015 Aug; 9(8):8131-41. PubMed ID: 26213123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdS/CdSe lateral heterostructure nanobelts by a two-step physical vapor transport method.
    Kim YL; Jung JH; Yoon HS; Song MS; Bae SH; Kim Y; Chen ZG; Zou J; Joyce HJ; Gao Q; Tan HH; Jagadish C
    Nanotechnology; 2010 Apr; 21(14):145602. PubMed ID: 20215653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdSe and CdSe/CdS core-shell QDs: New approach for synthesis, investigating optical properties and application in pollutant degradation.
    Abbasi S; Molaei M; Karimipour M
    Luminescence; 2017 Nov; 32(7):1137-1144. PubMed ID: 28378916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe).
    Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G
    Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings.
    Prudnikau A; Chuvilin A; Artemyev M
    J Am Chem Soc; 2013 Oct; 135(39):14476-9. PubMed ID: 24047284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.