These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 9947150)

  • 1. Theory of upper critical field, fluctuation conductivity, and fluctuation specific heat for high-Tc superconductors in a magnetic field.
    Rieck CT; Wölkhausen T; Fay D; Tewordt L
    Phys Rev B Condens Matter; 1989 Jan; 39(1):278-286. PubMed ID: 9947150
    [No Abstract]   [Full Text] [Related]  

  • 2. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.
    Murray JM; Tesanović Z
    Phys Rev Lett; 2010 Jul; 105(3):037006. PubMed ID: 20867796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling behavior of fluctuation conductivity of high-temperature superconductors in a magnetic field.
    Kim DH; Gray KE; Trochet MD
    Phys Rev B Condens Matter; 1992 May; 45(18):10801-10804. PubMed ID: 10000992
    [No Abstract]   [Full Text] [Related]  

  • 4. Fluctuation conductivity of layered high-Tc superconductors: A theoretical analysis of recent experiments.
    Reggiani L; Vaglio R; Varlamov AA
    Phys Rev B Condens Matter; 1991 Nov; 44(17):9541-9546. PubMed ID: 9998939
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluctuation conductivity of high-Tc superconductors.
    Maki K; Thompson RS
    Phys Rev B Condens Matter; 1989 Feb; 39(4):2767-2770. PubMed ID: 9948538
    [No Abstract]   [Full Text] [Related]  

  • 6. Fluctuation conductivity of layered superconductors in a perpendicular magnetic field.
    Dorin VV; Klemm RA; Varlamov AA; Buzdin AI; Livanov DV
    Phys Rev B Condens Matter; 1993 Nov; 48(17):12951-12965. PubMed ID: 10007671
    [No Abstract]   [Full Text] [Related]  

  • 7. Fluctuation conductivity and Ginzburg-Landau parameters in high-temperature superconductors above Tc: Effect of strong inelastic scattering.
    Horbach ML; Vos FL; van Saarloos W
    Phys Rev B Condens Matter; 1994 Feb; 49(5):3539-3543. PubMed ID: 10011221
    [No Abstract]   [Full Text] [Related]  

  • 8. Kramers non-magnetic superconductivity in LnNiAsO superconductors.
    Li Y; Luo Y; Li L; Chen B; Xu X; Dai J; Yang X; Zhang L; Cao G; Xu ZA
    J Phys Condens Matter; 2014 Oct; 26(42):425701. PubMed ID: 25248377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.
    Pines D
    J Phys Chem B; 2013 Oct; 117(42):13145-53. PubMed ID: 23819856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Fermi-surface anisotropy in angle-dependent magnetic-field oscillations for identifying the energy-gap anisotropy of A(y)Fe(2)Se(2) superconductors.
    Das T; Vorontsov AB; Vekhter I; Graf MJ
    Phys Rev Lett; 2012 Nov; 109(18):187006. PubMed ID: 23215321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconducting anisotropy in the electron-doped high-Tc superconductors Pr2-xCexCuO4-y.
    Wu G; Greene RL; Reyes AP; Kuhns PL; Moulton WG; Wu B; Wu F; Clark WG
    J Phys Condens Matter; 2014 Oct; 26(40):405701. PubMed ID: 25219526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-fluctuation effects in the transport properties of ultrathin films of disordered superconductors above the paramagnetic limit.
    Khodas M; Levchenko A; Catelani G
    Phys Rev Lett; 2012 Jun; 108(25):257004. PubMed ID: 23004644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Berry phases and the intrinsic thermal Hall effect in high-temperature cuprate superconductors.
    Cvetkovic V; Vafek O
    Nat Commun; 2015 Mar; 6():6518. PubMed ID: 25758469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-conventional superconducting fluctuations in Ba(Fe1-xRhx)2As2 iron-based superconductors.
    Bossoni L; Romanó L; Canfield PC; Lascialfari A
    J Phys Condens Matter; 2014 Oct; 26(40):405703. PubMed ID: 25229750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-fluctuation effect on the critical temperature of layered high-Tc superconductors.
    Ariosa D; Beck H
    Phys Rev B Condens Matter; 1991 Jan; 43(1):344-350. PubMed ID: 9996218
    [No Abstract]   [Full Text] [Related]  

  • 16. A route for a strong increase of critical current in nanostrained iron-based superconductors.
    Ozaki T; Wu L; Zhang C; Jaroszynski J; Si W; Zhou J; Zhu Y; Li Q
    Nat Commun; 2016 Oct; 7():13036. PubMed ID: 27708268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment.
    Liu C; Chang B; Qiu L; Dong H; Qiu Y; Zhang Y; Krause HJ; Offenhäusser A; Xie X
    J Magn Reson; 2015 Aug; 257():8-14. PubMed ID: 26037135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrostatic pressure: a very effective approach to significantly enhance critical current density in granular iron pnictide superconductors.
    Shabbir B; Wang X; Ghorbani SR; Shekhar C; Dou S; Srivastava ON
    Sci Rep; 2015 Feb; 5():8213. PubMed ID: 25645351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signature of the d-wave gap parameter in the field dependence of the electrothermal conductivity of high-Tc superconductors up to Tc.
    Houssa M; Ausloos M; Pekala M
    Phys Rev B Condens Matter; 1996 Nov; 54(18):R12713-R12716. PubMed ID: 9985226
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of lithium doping on the thermodynamic properties of graphene based superconductors.
    Szczȩśniak D; Durajski AP; Szczȩśniak R
    J Phys Condens Matter; 2014 Jun; 26(25):255701. PubMed ID: 24861555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.