These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Shape control of CdSe nanocrystals with zinc blende structure. Liu L; Zhuang Z; Xie T; Wang YG; Li J; Peng Q; Li Y J Am Chem Soc; 2009 Nov; 131(45):16423-9. PubMed ID: 19902978 [TBL] [Abstract][Full Text] [Related]
43. Temperature dependent electronic band structure of wurtzite GaAs nanowires. Vainorius N; Kubitza S; Lehmann S; Samuelson L; Dick KA; Pistol ME Nanoscale; 2018 Jan; 10(3):1481-1486. PubMed ID: 29303195 [TBL] [Abstract][Full Text] [Related]
44. Investigation of the bulk and surface properties of CdSe: insights from theory. Szemjonov A; Pauporté T; Ciofini I; Labat F Phys Chem Chem Phys; 2014 Nov; 16(42):23251-9. PubMed ID: 25259379 [TBL] [Abstract][Full Text] [Related]
45. Host-isotope fine structure of local and gap modes of substitutional impurities in zinc-blende and wurtzite II-VI semiconductors. Sciacca MD; Mayur AJ; Kim H; Miotkowski I; Ramdas AK; Rodriguez S Phys Rev B Condens Matter; 1996 May; 53(19):12878-12883. PubMed ID: 9982959 [No Abstract] [Full Text] [Related]
46. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires. Schmidt TM; Miwa RH Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926 [TBL] [Abstract][Full Text] [Related]
50. Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction. Saruyama M; So YG; Kimoto K; Taguchi S; Kanemitsu Y; Teranishi T J Am Chem Soc; 2011 Nov; 133(44):17598-601. PubMed ID: 21972931 [TBL] [Abstract][Full Text] [Related]
51. ZnS nanoparticles well dispersed in ethylene glycol: coordination control synthesis and application as nanocomposite optical coatings. Cheng Y; Lin Z; Lü H; Zhang L; Yang B Nanotechnology; 2014 Mar; 25(11):115601. PubMed ID: 24556742 [TBL] [Abstract][Full Text] [Related]
52. New organometallic single-source precursors for CuGaS(2)-polytypism in gallite nanocrystals obtained by thermolysis. Kluge O; Friedrich D; Wagner G; Krautscheid H Dalton Trans; 2012 Jul; 41(28):8635-42. PubMed ID: 22684195 [TBL] [Abstract][Full Text] [Related]
53. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study. Saha B; Sands TD; Waghmare UV J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147 [TBL] [Abstract][Full Text] [Related]
54. Resonant impurity bands in semiconductor superlattices. Stehr D; Metzner C; Helm M; Roch T; Strasser G Phys Rev Lett; 2005 Dec; 95(25):257401. PubMed ID: 16384504 [TBL] [Abstract][Full Text] [Related]
57. Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. Omata T; Nagatani H; Suzuki I; Kita M; Yanagi H; Ohashi N J Am Chem Soc; 2014 Mar; 136(9):3378-81. PubMed ID: 24555768 [TBL] [Abstract][Full Text] [Related]
58. Predictions and systematizations of the zinc-blende-wurtzite structural energies in binary octet compounds. Yeh CY; Lu ZW; Froyen S; Zunger A Phys Rev B Condens Matter; 1992 May; 45(20):12130-12133. PubMed ID: 10001242 [No Abstract] [Full Text] [Related]
59. Relationships between the band gaps of the zinc-blende and wurtzite modifications of semiconductors. Yeh CY; Wei SH; Zunger A Phys Rev B Condens Matter; 1994 Jul; 50(4):2715-2718. PubMed ID: 9976506 [No Abstract] [Full Text] [Related]
60. Resonant magneto-optical spin transitions in zinc-blende and wurtzite semiconductors. Zorkani I; Kartheuser E Phys Rev B Condens Matter; 1996 Jan; 53(4):1871-1880. PubMed ID: 9983645 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]