These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9947541)
21. Microscopic theory of second-order Raman scattering in silicon under uniaxial stress. Grein CH; Zollner S; Cardona M Phys Rev B Condens Matter; 1991 Mar; 43(8):6633-6641. PubMed ID: 9998106 [No Abstract] [Full Text] [Related]
22. Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances. Leng W; Kelley AM J Chem Phys; 2007 Oct; 127(16):164509. PubMed ID: 17979362 [TBL] [Abstract][Full Text] [Related]
23. Doubly and triply resonant Raman scattering via electron-two-phonon and impurity-induced Fröhlich interactions in uniaxially stressed GaAs. Alexandrou A; Trallero-Giner C; Kanellis G; Cardona M Phys Rev B Condens Matter; 1989 Jul; 40(2):1013-1022. PubMed ID: 9991924 [No Abstract] [Full Text] [Related]
24. Strain-dependent splitting of the double-resonance Raman scattering band in graphene. Yoon D; Son YW; Cheong H Phys Rev Lett; 2011 Apr; 106(15):155502. PubMed ID: 21568572 [TBL] [Abstract][Full Text] [Related]
25. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. Ni ZH; Yu T; Lu YH; Wang YY; Feng YP; Shen ZX ACS Nano; 2008 Nov; 2(11):2301-5. PubMed ID: 19206396 [TBL] [Abstract][Full Text] [Related]
26. Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators. Farnesi D; Berneschi S; Cosi F; Righini GC; Soria S; Nunzi Conti G J Vis Exp; 2016 Apr; (110):e53938. PubMed ID: 27078752 [TBL] [Abstract][Full Text] [Related]
30. Auger resonant Raman scattering in itinerant electron systems: continuum excitation in Cu. Föhlisch A; Karis O; Weinelt M; Hasselström J; Nilsson A; Mårtensson N Phys Rev Lett; 2002 Jan; 88(2):027601. PubMed ID: 11801036 [TBL] [Abstract][Full Text] [Related]
31. Triply resonant sum frequency spectroscopy: combining advantages of resonance Raman and 2D-IR. Boyle ES; Neff-Mallon NA; Wright JC J Phys Chem A; 2013 Nov; 117(47):12401-8. PubMed ID: 24160771 [TBL] [Abstract][Full Text] [Related]
32. Radiative recombination across the E0+ Delta 0 band gap in CdTe. Lusson A; Wagner J Phys Rev B Condens Matter; 1989 Dec; 40(18):12520-12522. PubMed ID: 9991892 [No Abstract] [Full Text] [Related]
33. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Sheremet E; Milekhin AG; Rodriguez RD; Weiss T; Nesterov M; Rodyakina EE; Gordan OD; Sveshnikova LL; Duda TA; Gridchin VA; Dzhagan VM; Hietschold M; Zahn DR Phys Chem Chem Phys; 2015 Sep; 17(33):21198-203. PubMed ID: 25566587 [TBL] [Abstract][Full Text] [Related]
34. Ab Initio Approach to Second-order Resonant Raman Scattering Including Exciton-Phonon Interaction. Gillet Y; Kontur S; Giantomassi M; Draxl C; Gonze X Sci Rep; 2017 Aug; 7(1):7344. PubMed ID: 28779127 [TBL] [Abstract][Full Text] [Related]
35. Tissue angiotensin-converting-enzyme (ACE) deficiency leads to a reduction in oxidative stress and in atherosclerosis: studies in ACE-knockout mice type 2. Hayek T; Pavlotzky E; Hamoud S; Coleman R; Keidar S; Aviram M; Kaplan M Arterioscler Thromb Vasc Biol; 2003 Nov; 23(11):2090-6. PubMed ID: 14525797 [TBL] [Abstract][Full Text] [Related]
36. Measurement method of nonresonant third-order susceptibility by using off-resonant coherent anti-Stokes Raman spectroscopy. Akihama K; Asai T; Yamazaki S Appl Opt; 1993 Dec; 32(36):7434-41. PubMed ID: 20861961 [TBL] [Abstract][Full Text] [Related]
37. Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles. Ding Y; Cong T; Chu X; Jia Y; Hong X; Liu Y Anal Bioanal Chem; 2016 Jul; 408(18):5013-9. PubMed ID: 27173389 [TBL] [Abstract][Full Text] [Related]
38. Resonant Raman scattering based approaches for the quantitative assessment of nanometric ZnMgO layers in high efficiency chalcogenide solar cells. Guc M; Hariskos D; Calvo-Barrio L; Jackson P; Oliva F; Pistor P; Perez-Rodriguez A; Izquierdo-Roca V Sci Rep; 2017 Apr; 7(1):1144. PubMed ID: 28442796 [TBL] [Abstract][Full Text] [Related]
39. [Reevaluation of the time course of the effect of propofol described with the Schnider pharmacokinetic model]. Sepúlveda PO; Mora X Rev Esp Anestesiol Reanim; 2012 Dec; 59(10):542-8. PubMed ID: 23040653 [TBL] [Abstract][Full Text] [Related]
40. Lowest limit for detection of impurity concentration in semiconductors by fluorescence XAFS: resonant Raman scattering and angle dependence. Takeda Y; Ofuchi H; Kyouzu H; Takahashi R; Tabuchi M J Synchrotron Radiat; 2005 Jul; 12(Pt 4):494-8. PubMed ID: 15968128 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]