These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9948071)

  • 1. Model for local para-Cooperons possibly relevant for high-temperature superconductors.
    Béal-Monod MT
    Phys Rev B Condens Matter; 1989 Jun; 39(16):12293-12296. PubMed ID: 9948071
    [No Abstract]   [Full Text] [Related]  

  • 2. [Levels of organization of living systems: cooperons].
    Levchenko VF; Kotolupov VA
    Zh Evol Biokhim Fiziol; 2010; 46(6):530-8. PubMed ID: 21268884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal interlayer hopping and high temperature Bose-Einstein condensation of local pairs in quasi 2D superconductors.
    Kornilovitch PE; Hague JP
    J Phys Condens Matter; 2015 Feb; 27(7):075602. PubMed ID: 25629425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperons at the metal-insulator transition revisited: Constraints on the renormalization group and a conjecture.
    Kirkpatrick TR; Belitz D
    Phys Rev B Condens Matter; 1994 Sep; 50(12):8272-8287. PubMed ID: 9974845
    [No Abstract]   [Full Text] [Related]  

  • 5. Cooperons from statistical scattering theory with application to the disordered ring.
    Zuk JA
    Phys Rev B Condens Matter; 1992 Apr; 45(16):8952-8969. PubMed ID: 10000756
    [No Abstract]   [Full Text] [Related]  

  • 6. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors.
    Kuo HH; Chu JH; Palmstrom JC; Kivelson SA; Fisher IR
    Science; 2016 May; 352(6288):958-62. PubMed ID: 27199422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress on carbon-based superconductors.
    Kubozono Y; Eguchi R; Goto H; Hamao S; Kambe T; Terao T; Nishiyama S; Zheng L; Miao X; Okamoto H
    J Phys Condens Matter; 2016 Aug; 28(33):334001. PubMed ID: 27351938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real space inhomogeneities in high temperature superconductors: the perspective of the two-component model.
    Krzyszczak J; Domański T; Wysokiński KI; Micnas R; Robaszkiewicz S
    J Phys Condens Matter; 2010 Jun; 22(25):255702. PubMed ID: 21393807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hidden pseudogap under the 'dome' of superconductivity in electron-doped high-temperature superconductors.
    Alff L; Krockenberger Y; Welter B; Schonecke M; Gross R; Manske D; Naito M
    Nature; 2003 Apr; 422(6933):698-701. PubMed ID: 12700755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review.
    Haindl S; Kidszun M; Oswald S; Hess C; Buchner B; Kolling S; Wilde L; Thersleff T; Yurchenko VV; Jourdan M; Hiramatsu H; Hosono H
    Rep Prog Phys; 2014 Apr; 77(4):046502. PubMed ID: 24695004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instabilities of high temperature superconductors.
    Matthias BT; Corenzwit E; Cooper AS; Longinotti LD
    Proc Natl Acad Sci U S A; 1971 Jan; 68(1):56-7. PubMed ID: 16591897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.
    Hu T; Liu Y; Xiao H; Mu G; Yang YF
    Sci Rep; 2017 Aug; 7(1):9469. PubMed ID: 28842685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiparticle bound states around impurities in d(x(2)-y(2))-wave superconductors.
    Haas S; Maki K
    Phys Rev Lett; 2000 Sep; 85(10):2172-5. PubMed ID: 10970490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.
    Pines D
    J Phys Chem B; 2013 Oct; 117(42):13145-53. PubMed ID: 23819856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model.
    Kohno M
    Rep Prog Phys; 2018 Apr; 81(4):042501. PubMed ID: 29300706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrons Clarify Superconductors: Neutron scattering experiments reveal a two-dimensional antiferromagnetic behavior that is consistent with an electron spin model of high-temperature superconductors.
    Robinson AL
    Science; 1987 Sep; 237(4819):1115-7. PubMed ID: 17801634
    [No Abstract]   [Full Text] [Related]  

  • 17. Breakdown of one-parameter scaling in quantum critical scenarios for high-temperature copper-oxide superconductors.
    Phillips P; Chamon C
    Phys Rev Lett; 2005 Sep; 95(10):107002. PubMed ID: 16196953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution electron microscopy of high-temperature superconductors.
    Marks LD; Li DJ; Shibahara H; Zhang JP
    J Electron Microsc Tech; 1988 Mar; 8(3):297-306. PubMed ID: 3073202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of convergent beam electron diffraction in the structural study of high-temperature superconducting oxides.
    Zou XD; Yang CY; Zhou YQ
    J Electron Microsc Tech; 1987 Dec; 7(4):269-75. PubMed ID: 3505593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of F-doping in pnictide high-temperature superconductors.
    Artioli GA; Malavasi L; Mozzati MC; Fernandez YD
    J Am Chem Soc; 2009 Sep; 131(34):12044-5. PubMed ID: 19663437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.