These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9948090)

  • 1. 35Cl spin-lattice relaxation and temperature-dependent phason gaps in substitutionally disordered incommensurate systems.
    Milia F; Papavassiliou G; Giannakopoulos E
    Phys Rev B Condens Matter; 1989 Jun; 39(16):12349-12351. PubMed ID: 9948090
    [No Abstract]   [Full Text] [Related]  

  • 2. Phason gap in substitutionally disordered incommensurate systems.
    Blinc R; Dolinek J; Prelovek P; Hamano K
    Phys Rev Lett; 1986 Jun; 56(22):2387-2390. PubMed ID: 10032973
    [No Abstract]   [Full Text] [Related]  

  • 3. 35Cl spin-lattice relaxation in incommensurate bis(4-chlorophenyl)sulfone.
    Blinc R; Apih T; Dolinsek J; Mikac U; Ailion DC; Chan P
    Phys Rev B Condens Matter; 1995 Jan; 51(2):1354-1357. PubMed ID: 9978304
    [No Abstract]   [Full Text] [Related]  

  • 4. Explanation of the glasslike anomaly in the low-temperature specific heat of incommensurate phases.
    Cano A; Levanyuk AP
    Phys Rev Lett; 2004 Dec; 93(24):245902. PubMed ID: 15697828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature- and pressure-dependent study of 35Cl NQR frequency and spin lattice relaxation time in 2,3-dichloroanisole.
    Ramu L; Ramesh KP; Ramananda D; Chandramani R
    Magn Reson Chem; 2010 Aug; 48(8):593-9. PubMed ID: 20586102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete lattice effects and the phason gap of incommensurate systems.
    Papavassiliou G; Anagnostopoulos A; Milia F; Blinc R; Kotsios S
    Phys Rev B Condens Matter; 1991 Oct; 44(14):7283-7288. PubMed ID: 9998638
    [No Abstract]   [Full Text] [Related]  

  • 7. Lattice relaxation in high-temperature pure crystalline materials and substitutionally disordered alloys. I. Multiple-scattering formalism for displaced atoms.
    Gonis A; Freeman AJ; Weinberger P
    Phys Rev B Condens Matter; 1985 Dec; 32(12):7713-7719. PubMed ID: 9936939
    [No Abstract]   [Full Text] [Related]  

  • 8. Commensurability and defect-induced phason gaps in incommensurate systems.
    Blinc R; Ailion DC; Dolinsek J; Zumer S
    Phys Rev Lett; 1985 Jan; 54(1):79-81. PubMed ID: 10030889
    [No Abstract]   [Full Text] [Related]  

  • 9. Lattice relaxation in high-temperature pure crystalline materials and substitutionally disordered alloys. II. Self-consistent treatment of distortion and related problems.
    Gonis A; Freeman AJ; Weinberger P
    Phys Rev B Condens Matter; 1985 Dec; 32(12):7720-7727. PubMed ID: 9936940
    [No Abstract]   [Full Text] [Related]  

  • 10. Proton spin-lattice relaxation and phason dynamics in dichlorobiphenylsulphone.
    de Souza RE ; Engelsberg M; Pusiol DJ
    Phys Rev Lett; 1991 Mar; 66(11):1505-1508. PubMed ID: 10043226
    [No Abstract]   [Full Text] [Related]  

  • 11. 35Cl NQR frequency and spin lattice relaxation time in 3,4-dichlorophenol as a function of pressure and temperature.
    Ramu L; Ramesh KP; Chandramani R
    Magn Reson Chem; 2013 Jan; 51(1):4-8. PubMed ID: 23161529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR in substitutionally disordered incommensurate (Rb1-xKx)2 ZnCl4.
    Blinc R; Apih T; Dolinsek J; Prelovsek P; Slak J; Ailion DC; Ganesan K
    Phys Rev B Condens Matter; 1994 Aug; 50(5):2827-2832. PubMed ID: 9976524
    [No Abstract]   [Full Text] [Related]  

  • 13. Spin-lattice relaxation due to sliding of the modulation wave in incommensurate systems with impurities.
    Zumer S; Blinc R; Milia F; Papavassiliou G
    Phys Rev B Condens Matter; 1992 Aug; 46(5):2758-2763. PubMed ID: 10003962
    [No Abstract]   [Full Text] [Related]  

  • 14. Dynamics of the phosphate group in phospholipid bilayers. A 31P angular dependent nuclear spin relaxation time study.
    Milburn MP; Jeffrey KR
    Biophys J; 1989 Sep; 56(3):543-9. PubMed ID: 2790137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tetranuclear manganese cluster in photosystem II: location and magnetic properties of the S2 state as determined by saturation-recovery EPR spectroscopy.
    Koulougliotis D; Schweitzer RH; Brudvig GW
    Biochemistry; 1997 Aug; 36(32):9735-46. PubMed ID: 9245405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using saturation-recovery EPR to measure distances in proteins: applications to photosystem II.
    Hirsh DJ; Beck WF; Innes JB; Brudvig GW
    Biochemistry; 1992 Jan; 31(2):532-41. PubMed ID: 1310040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear spin-lattice relaxation in nanofluids with paramagnetic impurities.
    Furman GB; Goren SD; Meerovich VM; Sokolovsky VL
    J Magn Reson; 2015 Dec; 261():175-80. PubMed ID: 26583530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very short NMR relaxation times of anions in ionic liquids: new pulse sequence to eliminate the acoustic ringing.
    Klimavicius V; Gdaniec Z; Balevicius V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():879-83. PubMed ID: 24938418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitations in incommensurate biphenyl: Proton spin-lattice relaxation.
    Liu SB; Conradi MS
    Phys Rev Lett; 1985 Mar; 54(12):1287-1290. PubMed ID: 10030986
    [No Abstract]   [Full Text] [Related]  

  • 20. Dynamics of the pinned modulation wave in incommensurate bis (4-chlorophenyl) sulfone (BCPS).
    Blinc R; Mikac U; Apih T; Dolinsek J; Seliger J; Slak J; Zumer S; Guibe L; Ailion DC
    Phys Rev Lett; 2002 Jan; 88(1):015701. PubMed ID: 11800968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.