BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 99482)

  • 1. [14C]palmitate uptake in isolated rat liver mitochondria: effects of fasting, diabetes mellitus, and inhibitors of carnitine acyltransferase.
    Amatruda JM; Lockwood DH; Margolis S; Kiesow LA
    J Lipid Res; 1978 Aug; 19(6):688-94. PubMed ID: 99482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acylation of carnitine and glycerophosphate in suspensions of rat liver mitochondria at varying levels of palmitate and coenzyme A.
    Borrebaek B
    Acta Physiol Scand; 1975 Dec; 95(4):448-56. PubMed ID: 1211200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria.
    Farstad M; Berge R
    Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide.
    Kerbey AL; Randle PJ; Cooper RH; Whitehouse S; Pask HT; Denton RM
    Biochem J; 1976 Feb; 154(2):327-48. PubMed ID: 180974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action of vasopressin and calcium on palmitate metabolism in hepatocytes and isolated mitochondria from rat liver.
    Almås I; Singh B; Borrebaek B
    Arch Biochem Biophys; 1983 Apr; 222(2):370-9. PubMed ID: 6847192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.
    Harper RD; Saggerson ED
    Biochem J; 1975 Dec; 152(3):485-94. PubMed ID: 1227502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnitine palmitoyltransferase activities (1 and 2) and the rate of palmitate oxidation in liver mitochondria from diabetic rats.
    Harano Y; Kowal J; Yamazaki R; Lavine L; Miller M
    Arch Biochem Biophys; 1972 Dec; 153(2):426-37. PubMed ID: 4267799
    [No Abstract]   [Full Text] [Related]  

  • 9. In vitro inhibition of carnitine acyltransferase activity in mitochondria from rat and mouse liver by a diethylhexylphthalate metabolite.
    Grolier P; Elcombe CR
    Biochem Pharmacol; 1993 Feb; 45(4):827-32. PubMed ID: 8452557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria.
    Sánchez M; Nicholls DG; Brindley DN
    Biochem J; 1973 Apr; 132(4):697-706. PubMed ID: 4721605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiketogenic and hypoglycemic effects of aminocarnitine and acylaminocarnitines.
    Jenkins DL; Griffith OW
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):290-4. PubMed ID: 3455765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of fatty acid oxidation in rat brain mitochondria: inhibition of high rates of palmitate oxidation by ADP.
    Kawamura N
    Arch Biochem Biophys; 1988 Aug; 264(2):546-52. PubMed ID: 2969699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors in cultured rat hepatocytes and in vivo.
    Hertz R; Bar-Tana J
    Biochem J; 1987 Jul; 245(2):387-92. PubMed ID: 3663164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incomplete palmitate oxidation in cell-free systems of rat and human muscles.
    Veerkamp JH; Van Moerkerk HT; Glatz JF; Van Hinsbergh VW
    Biochim Biophys Acta; 1983 Oct; 753(3):399-410. PubMed ID: 6615873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The involvement of carnitine intermediates in peroxisomal fatty acid oxidation: a study with 2-bromofatty acids.
    Buechler KF; Lowenstein JM
    Arch Biochem Biophys; 1990 Sep; 281(2):233-8. PubMed ID: 2393299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats.
    McGarry JD; Foster DW
    Biochem J; 1981 Nov; 200(2):217-23. PubMed ID: 7340831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High sensitivity of carnitine acyltransferase I to malonyl-CoA inhibition in liver of obese Zucker rats.
    Clouet P; Henninger C; Pascal M; Bézard J
    FEBS Lett; 1985 Mar; 182(2):331-4. PubMed ID: 3979557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of -bromo-palmitate on the oxidation of palmitic acid by rat liver cells.
    Mahadevan S; Sauer F
    J Biol Chem; 1971 Oct; 246(19):5862-7. PubMed ID: 5116654
    [No Abstract]   [Full Text] [Related]  

  • 20. On the inhibition of -oxobutyrate utilization by fatty acids in rat liver mitochondria.
    Ciman M; Carignani G; Alexandre A; Siliprandi N
    Biochim Biophys Acta; 1971 Nov; 253(1):24-8. PubMed ID: 5126508
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.