These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9948911)

  • 1. Band-gap-dependent electron and hole transport in p-type HgTe-CdTe superlattices.
    Hoffman CA; Meyer JR; Bartoli FJ; Han JW; Cook JW; Schetzina JF; Schulman JN
    Phys Rev B Condens Matter; 1989 Mar; 39(8):5208-5221. PubMed ID: 9948911
    [No Abstract]   [Full Text] [Related]  

  • 2. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices.
    Laref A; Alsagri M; Alahmed ZA; Laref S
    RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double hole cyclotron resonance in zero-gap HgTe-CdTe superlattices.
    Meyer JR; Wagner RJ; Bartoli FJ; Hoffman CA; Ram-Mohan LR
    Phys Rev B Condens Matter; 1989 Jul; 40(2):1388-1391. PubMed ID: 9991983
    [No Abstract]   [Full Text] [Related]  

  • 4. Electron and hole in-plane mobilities in HgTe-CdTe superlattices.
    Meyer JR; Arnold DJ; Hoffman CA; Bartoli FJ; Ram-Mohan LR
    Phys Rev B Condens Matter; 1992 Aug; 46(7):4139-4146. PubMed ID: 10004144
    [No Abstract]   [Full Text] [Related]  

  • 5. Optical investigation of hole and electron subbands in HgTe-CdTe superlattices.
    Olego DJ; Faurie JP; Raccah PM
    Phys Rev Lett; 1985 Jul; 55(3):328-331. PubMed ID: 10032320
    [No Abstract]   [Full Text] [Related]  

  • 6. Strain Engineering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates.
    Leubner P; Lunczer L; Brüne C; Buhmann H; Molenkamp LW
    Phys Rev Lett; 2016 Aug; 117(8):086403. PubMed ID: 27588871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields.
    Zholudev MS; Ikonnikov AV; Teppe F; Orlita M; Maremyanin KV; Spirin KE; Gavrilenko VI; Knap W; Dvoretskiy SA; Mihailov NN
    Nanoscale Res Lett; 2012 Sep; 7(1):534. PubMed ID: 23013642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semimetallic InAs/Ga1-xInxSb superlattices with HgTe/CdTe-like band structures.
    Meyer JR; Hoffman CA; Bartoli FJ; Ram-Mohan LR
    Phys Rev B Condens Matter; 1994 Jan; 49(3):2197-2200. PubMed ID: 10011035
    [No Abstract]   [Full Text] [Related]  

  • 9. Optical properties of HgTe/CdTe superlattices in the normal, semimetallic, and inverted-band regimes.
    Yang Z; Yu Z; Lansari Y; Hwang S; Cook JW; Schetzina JF
    Phys Rev B Condens Matter; 1994 Mar; 49(12):8096-8108. PubMed ID: 10009574
    [No Abstract]   [Full Text] [Related]  

  • 10. Valence-band-offset controversy in HgTe/CdTe superlattices: A possible resolution.
    Johnson NF; Hui PM; Ehrenreich H
    Phys Rev Lett; 1988 Oct; 61(17):1993-1995. PubMed ID: 10038951
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of dephasing on edge state transport through p-n junctions in HgTe/CdTe quantum wells.
    Zhang YT; Song J; Sun QF
    J Phys Condens Matter; 2014 Feb; 26(8):085301. PubMed ID: 24501192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron mobilities and quantum Hall effect in modulation-doped HgTe-CdTe superlattices.
    Hoffman CA; Meyer JR; Bartoli FJ; Lansari Y; Cook JW; Schetzina JF
    Phys Rev B Condens Matter; 1991 Oct; 44(15):8376-8379. PubMed ID: 9998786
    [No Abstract]   [Full Text] [Related]  

  • 13. Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe.
    Luo JW; Zunger A
    Phys Rev Lett; 2010 Oct; 105(17):176805. PubMed ID: 21231069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetotransport properties of p-type HgTe-CdTe superlattices.
    Woo KC; Rafol S; Faurie JP
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5996-5999. PubMed ID: 9940462
    [No Abstract]   [Full Text] [Related]  

  • 15. Photo-Hall investigation of p-type HgTe-CdTe superlattices.
    Hoffman CA; Meyer JR; Youngdale ER; Lindle JR; Bartoli FJ; Harris KA; Cook JW; Schetzina JF
    Phys Rev B Condens Matter; 1988 Apr; 37(12):6933-6940. PubMed ID: 9943963
    [No Abstract]   [Full Text] [Related]  

  • 16. Theoretical investigation of collective excitations in HgTe/CdTe superlattices. II. Intersubband excitation and effects of magnetic field and electron-phonon coupling.
    Huang Dh; Zhou Sx
    Phys Rev B Condens Matter; 1988 Dec; 38(18):13069-13078. PubMed ID: 9946279
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantum Hall effect from the topological surface states of strained bulk HgTe.
    Brüne C; Liu CX; Novik EG; Hankiewicz EM; Buhmann H; Chen YL; Qi XL; Shen ZX; Zhang SC; Molenkamp LW
    Phys Rev Lett; 2011 Mar; 106(12):126803. PubMed ID: 21517339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and optical properties of holes in p-type zero-band-gap Hg1-xZnxTe/CdTe superlattices.
    Choi JB; Yoo KH; Han JW; Kang TW; Meyer JR; Hoffman CA; Karczewski G; Furdyna JK; Faurie JP
    Phys Rev B Condens Matter; 1994 Apr; 49(16):11060-11065. PubMed ID: 10009952
    [No Abstract]   [Full Text] [Related]  

  • 19. Valence-band-offset transitivity at HgTe/CdTe, HgTe/InSb, and CdTe/InSb interfaces.
    Qteish A; Needs RJ
    Phys Rev B Condens Matter; 1993 Feb; 47(7):3714-3717. PubMed ID: 10006474
    [No Abstract]   [Full Text] [Related]  

  • 20. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.
    Maity P; Debnath T; Chopra U; Ghosh HN
    Nanoscale; 2015 Feb; 7(6):2698-707. PubMed ID: 25583154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.