These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9948911)

  • 41. Electronic structures of HgTe and CdTe surfaces and HgTe/CdTe interfaces.
    Schick JT; Bose SM; Chen A
    Phys Rev B Condens Matter; 1989 Oct; 40(11):7825-7830. PubMed ID: 9991210
    [No Abstract]   [Full Text] [Related]  

  • 42. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transport properties of a 3D topological insulator based on a strained high-mobility HgTe film.
    Kozlov DA; Kvon ZD; Olshanetsky EB; Mikhailov NN; Dvoretsky SA; Weiss D
    Phys Rev Lett; 2014 May; 112(19):196801. PubMed ID: 24877958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for a large valence-band offset at HgTe-CdTe heterojunctions.
    Tersoff J
    Phys Rev B Condens Matter; 1989 Nov; 40(15):10615-10616. PubMed ID: 9991614
    [No Abstract]   [Full Text] [Related]  

  • 45. Additional evidence concerning the valence-band offset in HgTe/CdTe.
    Young PM; Ehrenreich H
    Phys Rev B Condens Matter; 1991 May; 43(14):12057-12059. PubMed ID: 9996989
    [No Abstract]   [Full Text] [Related]  

  • 46. Magneto-optical determination of the HgTe-CdTe superlattice band structure.
    Berroir JM; Guldner Y; Vieren JP; Voos M; Faurie JP
    Phys Rev B Condens Matter; 1986 Jul; 34(2):891-894. PubMed ID: 9939700
    [No Abstract]   [Full Text] [Related]  

  • 47. Determination of a natural valence-band offset: The case of HgTe-CdTe.
    Shih CK; Spicer WE
    Phys Rev Lett; 1987 Jun; 58(24):2594-2597. PubMed ID: 10034792
    [No Abstract]   [Full Text] [Related]  

  • 48. Band-edge properties of quasi-one-dimensional HgTe-CdTe heterostructures.
    Meyer JR; Bartoli FJ; Hoffman CA; Ram-Mohan LR
    Phys Rev Lett; 1990 Apr; 64(16):1963-1966. PubMed ID: 10041539
    [No Abstract]   [Full Text] [Related]  

  • 49. Far-infrared determination of effective mass and valence-band offset in the HgTe/CdTe superlattice.
    Perkowitz S; Lou B; Kim LS; Wu OK; Schulman JN
    Phys Rev B Condens Matter; 1989 Sep; 40(8):5613-5616. PubMed ID: 9992597
    [No Abstract]   [Full Text] [Related]  

  • 50. Super sensitization: grand charge (hole/electron) separation in ATC dye sensitized CdSe, CdSe/ZnS type-I, and CdSe/CdTe type-II core-shell quantum dots.
    Debnath T; Maity P; Ghosh HN
    Chemistry; 2014 Oct; 20(41):13305-13. PubMed ID: 25179856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination.
    Choi SB; Song MS; Kim Y
    Nanotechnology; 2018 Apr; 29(14):145702. PubMed ID: 29376840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Negative energy gap in HgTe-CdTe heterostructures with thick wells.
    Hoffman CA; Meyer JR; Bartoli FJ; Lansari Y; Cook JW; Schetzina JF
    Phys Rev B Condens Matter; 1989 Aug; 40(6):3867-3871. PubMed ID: 9992356
    [No Abstract]   [Full Text] [Related]  

  • 53. CdTe-HgTe (1-bar 1-bar 1-bar) heterojunction valence-band discontinuity: A common-anion-rule contradiction.
    Kowalczyk SP; Cheung JT; Kraut EA; Grant RW
    Phys Rev Lett; 1986 Apr; 56(15):1605-1608. PubMed ID: 10032720
    [No Abstract]   [Full Text] [Related]  

  • 54. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe.
    Li J; He C; Meng L; Xiao H; Tang C; Wei X; Kim J; Kioussis N; Stocks GM; Zhong J
    Sci Rep; 2015 Sep; 5():14115. PubMed ID: 26365502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.
    Zhang N; Neo DC; Tazawa Y; Li X; Assender HE; Compton RG; Watt AA
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21417-22. PubMed ID: 27421066
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comment on "Linearity. of valence-band discontinuity in heterojunctions with Te-based II-VI semiconductors: CdTe, HgTe, and ZnTe".
    Jaros M
    Phys Rev Lett; 1988 Jun; 60(24):2560. PubMed ID: 10038389
    [No Abstract]   [Full Text] [Related]  

  • 57. Stable ultra-thin CdTe crystal: a robust direct gap semiconductor.
    Iyikanat F; Akbali B; Kang J; Senger RT; Selamet Y; Sahin H
    J Phys Condens Matter; 2017 Dec; 29(48):485302. PubMed ID: 29061916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets.
    Pedetti S; Ithurria S; Heuclin H; Patriarche G; Dubertret B
    J Am Chem Soc; 2014 Nov; 136(46):16430-8. PubMed ID: 25338215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Linearity (commutativity and transitivity) of valence-band discontinuity in heterojunctions with Te-based II-VI semiconductors: CdTe, HgTe, and ZnTe.
    Duc TM; Hsu C; Faurie JP
    Phys Rev Lett; 1987 Mar; 58(11):1127-1130. PubMed ID: 10034346
    [No Abstract]   [Full Text] [Related]  

  • 60. Helical quantum states in HgTe quantum dots with inverted band structures.
    Chang K; Lou WK
    Phys Rev Lett; 2011 May; 106(20):206802. PubMed ID: 21668252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.