These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9949150)

  • 1. Erratum: "Theoretical explanation of zero-field splitting and its pressure, and temperature dependence in NiSIF6.
    Wen-Chen Z
    Phys Rev B Condens Matter; 1989 Mar; 39(7):4725. PubMed ID: 9949150
    [No Abstract]   [Full Text] [Related]  

  • 2. Theoretical explanation of zero-field splitting and its pressure, stress, and temperature dependence in NiSiF6.
    Wen-Chen Z
    Phys Rev B Condens Matter; 1987 Dec; 36(16):8774-8776. PubMed ID: 9942703
    [No Abstract]   [Full Text] [Related]  

  • 3. A theoretical study on the temperature dependence of zero-field splitting for the tetragonal Cr3+ center in MgO crystal.
    Zheng WC; Jia GM; He L; Yang WQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):818-20. PubMed ID: 21216186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical studies of the temperature dependence of zero-field splitting of Cr3+ centers in ruby.
    Zheng WC; Wu SY
    Phys Rev B Condens Matter; 1996 Jul; 54(2):1117-1122. PubMed ID: 9985381
    [No Abstract]   [Full Text] [Related]  

  • 5. EPR spectroscopy of soybean lipoxygenase-1. Determination of the zero-field splitting constants of high-spin Fe(III) signals from temperature and microwave frequency dependence.
    Slappendel S; Veldink GA; Vliegenthart JF; Aasa R; Malmström BG
    Biochim Biophys Acta; 1980 Jul; 624(1):30-9. PubMed ID: 6250632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ULFC method for d(4)(D(2d)) ions and a study of the spin singlets contributions to zero-field splitting of Cr(2+) ions in zinc sulfide crystals.
    Cheng L; Xiao-Yu K; Kang-Wei Z
    J Phys Chem A; 2007 Nov; 111(43):11110-5. PubMed ID: 17918816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of multi-frequency EPR spectra for a distribution of the zero-field splitting.
    Azarkh M; Groenen EJ
    J Magn Reson; 2015 Jun; 255():106-13. PubMed ID: 25955436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valley polarization in Si(100) at zero magnetic field.
    Takashina K; Ono Y; Fujiwara A; Takahashi Y; Hirayama Y
    Phys Rev Lett; 2006 Jun; 96(23):236801. PubMed ID: 16803388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: Analysis of cubic zero-field splitting of Fe3+ and Mn2+ in tetrahedral coordination.
    Xiao-Yu K; Morgenstern-Badarau I
    Phys Rev B Condens Matter; 1995 Dec; 52(21):15648. PubMed ID: 9980928
    [No Abstract]   [Full Text] [Related]  

  • 10. Erratum: Cubic zero-field splitting and site symmetry of Mn2+ in ZnS.
    Kang-Wei Z; Sang-Bo Z; You-Ming N
    Phys Rev B Condens Matter; 1991 Oct; 44(14):7770. PubMed ID: 10021550
    [No Abstract]   [Full Text] [Related]  

  • 11. Theoretical determination of the zero-field splitting in copper acetate monohydrate.
    Maurice R; Sivalingam K; Ganyushin D; Guihéry N; de Graaf C; Neese F
    Inorg Chem; 2011 Jul; 50(13):6229-36. PubMed ID: 21634387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of photophysical properties of a dinuclear C^N-cyclometalated Pt(ii) complex with an intimate Pt-Pt contact. Zero-field splitting and sub-state decay rates of the lowest triplet.
    Deaton JC; Chakraborty A; Czerwieniec R; Yersin H; Castellano FN
    Phys Chem Chem Phys; 2018 Oct; 20(38):25096-25104. PubMed ID: 30250953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigations of zero-field splitting of excited states for 3d3 ions in trigonal crystal fields.
    Wei Q; Yang Z; Wang C; Xu Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):665-8. PubMed ID: 17420153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.
    Angiolillo PJ; Vanderkooi JM
    Biophys J; 1995 Jun; 68(6):2505-18. PubMed ID: 7647253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the quadrupolar NMR splittings of 7Li+, 23Na+, and 133Cs+ counterions in macroscopically oriented DNA fibers.
    Schultz J; Nordenskiöld L; Rupprecht A
    Biopolymers; 1992 Dec; 32(12):1631-42. PubMed ID: 1472648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: paramagnetic NMR chemical shift in a spin state subject to zero-field splitting.
    Soncini A; Van den Heuvel W
    J Chem Phys; 2013 Jan; 138(2):021103. PubMed ID: 23320659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-field splitting of the lowest excited triplet states of C(60) and C(70) and benzene.
    van Gastel M
    J Phys Chem A; 2010 Oct; 114(40):10864-70. PubMed ID: 20845950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantitative analysis of absorption spectra and spectra of magneto-optical rotatory dispersion of hemoproteins with reference to zero-field splitting. I. Analysis of the divalentcation of deuteroporphyrin in the Q-band region].
    Ristau O; Rein H
    Acta Biol Med Ger; 1976; 35(12):1613-24. PubMed ID: 1028327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the efficiency of photon beam treatment head simulations.
    Kawrakow I
    Med Phys; 2005 Jul; 32(7Part1):2320-2326. PubMed ID: 28493580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of zero-field splitting and evidence for the presence of charge-transfer transitions in the Soret region of high-spin ferric hemoproteins obtained from an analysis of low-temperature magnetic circular dichroism.
    Oganesyan VS; Sharonov YA
    Biochim Biophys Acta; 1998 Dec; 1429(1):163-75. PubMed ID: 9920394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.