These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 99494)

  • 1. An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta).
    Bresnahan JC
    J Neurol Sci; 1978 Jun; 37(1-2):59-82. PubMed ID: 99494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neuroanatomical analysis of spinal cord injury in the rhesus monkey (Macaca mulatta).
    Bresnahan JC; King JS; Martin GF; Yashon D
    J Neurol Sci; 1976 Aug; 28(4):521-42. PubMed ID: 820835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A controlled spinal cord contusion for the rhesus macaque monkey.
    Ma Z; Zhang YP; Liu W; Yan G; Li Y; Shields LBE; Walker M; Chen K; Huang W; Kong M; Lu Y; Brommer B; Chen X; Xu XM; Shields CB
    Exp Neurol; 2016 May; 279():261-273. PubMed ID: 26875994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling.
    Blight AR
    Neuroscience; 1983 Oct; 10(2):521-43. PubMed ID: 6633870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of acute axonal pathology in experimental spinal cord contusion.
    Rosenberg LJ; Wrathall JR
    J Neurotrauma; 1997 Nov; 14(11):823-38. PubMed ID: 9421454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron microscopic observations of the mechanisms of terminal club formation in transected spinal cord axons.
    Kao CC; Chang LW; Bloodworth JM
    J Neuropathol Exp Neurol; 1977 Jan; 36(1):140-56. PubMed ID: 64594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin.
    Balentine JD
    Lab Invest; 1978 Sep; 39(3):254-66. PubMed ID: 713490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical stimulation leads to shortened myelin sheaths and increased axonal branching in spared axons after cervical spinal cord injury.
    Kondiles BR; Murphy RL; Widman AJ; Perlmutter SI; Horner PJ
    Glia; 2023 Aug; 71(8):1947-1959. PubMed ID: 37096399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrastructural study of subacute combined degeneration of the spinal cord in vitamin B12-deficient rhesus monkeys.
    Agamanolis DP; Victor M; Harris JW; Hines JD; Chester EM; Kark JA
    J Neuropathol Exp Neurol; 1978 May; 37(3):273-99. PubMed ID: 96220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks.
    Griffiths IR; McCulloch MC
    J Neurol Sci; 1983 Mar; 58(3):335-49. PubMed ID: 6842262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury.
    Anthes DL; Theriault E; Tator CH
    Brain Res; 1995 Dec; 702(1-2):1-16. PubMed ID: 8846063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myelin and microsomes from rhesus monkey spinal cord: isolation and effects of trauma.
    Toews AD; King JS; Yashon D; Horrocks LA
    Neurol Res; 1980; 1(3):271-9. PubMed ID: 6107873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological changes in the white matter after spinal contusion injury in the rat.
    Ek CJ; Habgood MD; Dennis R; Dziegielewska KM; Mallard C; Wheaton B; Saunders NR
    PLoS One; 2012; 7(8):e43484. PubMed ID: 22952690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous long-term remyelination after traumatic spinal cord injury in rats.
    Salgado-Ceballos H; Guizar-Sahagun G; Feria-Velasco A; Grijalva I; Espitia L; Ibarra A; Madrazo I
    Brain Res; 1998 Jan; 782(1-2):126-35. PubMed ID: 9519256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau.
    Lin WL; Zehr C; Lewis J; Hutton M; Yen SH; Dickson DW
    J Neurocytol; 2005 Dec; 34(6):397-410. PubMed ID: 16902761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis.
    Bando Y; Nomura T; Bochimoto H; Murakami K; Tanaka T; Watanabe T; Yoshida S
    Neurochem Int; 2015 Feb; 81():16-27. PubMed ID: 25595039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of cytoskeletal proteins in experimental spinal cord injury.
    Banik NL; Hogan EL; Powers JM; Whetstine LJ
    Neurochem Res; 1982 Dec; 7(12):1465-75. PubMed ID: 7170062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord.
    LaMotte C
    J Comp Neurol; 1977 Apr; 172(3):529-61. PubMed ID: 402397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.