These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Regulation of renal medullary circulation by the renin-angiotensin system in genetically hypertensive rats. Liu KL Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):455-61. PubMed ID: 19215237 [TBL] [Abstract][Full Text] [Related]
6. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450. Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559 [TBL] [Abstract][Full Text] [Related]
7. Differential effect of frusemide on renal medullary and cortical blood flow in the anaesthetised rat. Dobrowolski L; B dzyńska B; Sadowski J Exp Physiol; 2000 Nov; 85(6):783-9. PubMed ID: 11187972 [TBL] [Abstract][Full Text] [Related]
8. Renal interstitial hydrostatic pressure and urinary sodium excretion in rats with angiotensin-converting enzyme inhibitor-induced papillary atrophy. Nilsson AB; Guron GS; Adams MA; Friberg P Exp Physiol; 1999 Sep; 84(5):947-57. PubMed ID: 10502662 [TBL] [Abstract][Full Text] [Related]
9. N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. Tian N; Rose RA; Jordan S; Dwyer TM; Hughson MD; Manning RD J Hypertens; 2006 Nov; 24(11):2263-70. PubMed ID: 17053549 [TBL] [Abstract][Full Text] [Related]
10. Pressure-volume regulation in hypertension. Hall JE; Guyton AC; Brands MW Kidney Int Suppl; 1996 Jun; 55():S35-41. PubMed ID: 8743508 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Evans RG; Majid DS; Eppel GA Clin Exp Pharmacol Physiol; 2005; 32(5-6):400-9. PubMed ID: 15854149 [TBL] [Abstract][Full Text] [Related]
12. Changes in renal medullary volume account for the relationship between arterial pressure and renal medullary interstitial cell lipid granule content. O'Connor P Clin Exp Pharmacol Physiol; 2004 Sep; 31(9):658; author reply 657. PubMed ID: 15479178 [No Abstract] [Full Text] [Related]
13. Oxidative stress, nitric oxide production, and renal sodium handling in leptin-induced hypertension. Beltowski J; Wójcicka G; Marciniak A; Jamroz A Life Sci; 2004 Apr; 74(24):2987-3000. PubMed ID: 15051422 [TBL] [Abstract][Full Text] [Related]
14. Alterations in renal medullary hemodynamics and the pressure-natriuretic response in genetic hypertension. Roman RJ Am J Hypertens; 1990 Nov; 3(11):893-900. PubMed ID: 2261156 [TBL] [Abstract][Full Text] [Related]
15. The lord of the ring: mandatory role of the kidney in drug therapy of hypertension. López-Hernández FJ; López-Novoa JM Pharmacol Ther; 2006 Jul; 111(1):53-80. PubMed ID: 16154201 [TBL] [Abstract][Full Text] [Related]
16. Endothelin B receptor antagonism in the rat renal medulla reduces urine flow rate and sodium excretion. Guo X; Yang T Exp Biol Med (Maywood); 2006 Jun; 231(6):1001-5. PubMed ID: 16741038 [TBL] [Abstract][Full Text] [Related]
17. Altered renal sodium handling in spontaneously hypertensive rats (SHR) after hypertonic saline intracerebroventricular injection: role of renal nerves. Guadagnini D; Gontijo JA Life Sci; 2006 Sep; 79(17):1666-73. PubMed ID: 16806279 [TBL] [Abstract][Full Text] [Related]
19. Renal medulla: an endocrine organ involved in blood pressure regulation. Brouhard BH; Cunningham RJ South Med J; 1977 Dec; 70(12):1461-4. PubMed ID: 594801 [TBL] [Abstract][Full Text] [Related]
20. Central role of the kidney and abnormal fluid volume control in hypertension. Hall JE; Brands MW; Shek EW J Hum Hypertens; 1996 Oct; 10(10):633-9. PubMed ID: 9004086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]