BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9950635)

  • 1. Permeability characteristics of novel mydriatic agents using an in vitro cell culture model that utilizes SIRC rabbit corneal cells.
    Goskonda VR; Khan MA; Hutak CM; Reddy IK
    J Pharm Sci; 1999 Feb; 88(2):180-4. PubMed ID: 9950635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability of chemical delivery systems across rabbit corneal (SIRC) cell line and isolated corneas: a comparative study.
    Goskonda VR; Hill RA; Khan MA; Reddy IK
    Pharm Dev Technol; 2000; 5(3):409-16. PubMed ID: 10934741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell culture models of the human cornea - a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro.
    Reichl S
    J Pharm Pharmacol; 2008 Mar; 60(3):299-307. PubMed ID: 18284809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture model of human corneal epithelium for prediction of ocular drug absorption.
    Toropainen E; Ranta VP; Talvitie A; Suhonen P; Urtti A
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2942-8. PubMed ID: 11687540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line.
    Tak RV; Pal D; Gao H; Dey S; Mitra AK
    J Pharm Sci; 2001 Oct; 90(10):1505-15. PubMed ID: 11745709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of pH on the permeability of timolol maleate across isolated rabbit cornea].
    Wei G; Xu H; Ma Y; Li SM; Zheng JM
    Yao Xue Xue Bao; 2001 Sep; 36(9):707-10. PubMed ID: 12580114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta adrenergic antagonist permeation across cultured rabbit corneal epithelial cells grown on permeable supports.
    Kawazu K; Shiono H; Tanioka H; Ota A; Ikuse T; Takashina H; Kawashima Y
    Curr Eye Res; 1998 Feb; 17(2):125-31. PubMed ID: 9523089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical delivery systems: evaluation of physicochemical properties and enzymatic stability of phenylephrone derivatives.
    Goskonda VR; Khan MA; Bodor NS; Reddy IK
    Pharm Dev Technol; 1999 May; 4(2):189-98. PubMed ID: 10231880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional differences in nucleoside and nucleobase transporters expressed on the rabbit corneal epithelial cell line (SIRC) and isolated rabbit cornea.
    Majumdar S; Tirucherai GS; Pal D; Mitra AK
    AAPS PharmSci; 2003; 5(2):E15. PubMed ID: 12866942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel site-specific chemical delivery system as a potential mydriatic agent: formation of phenylephrine in the iris-ciliary body from phenylephrone chemical delivery systems.
    Goskonda VR; Ghandehari H; Reddy IK
    J Pharm Sci; 2001 Jan; 90(1):12-22. PubMed ID: 11064374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies of N-glycans and glycosaminoglycans present in SIRC (Statens Seruminstitut rabbit cornea) cells and corneal epithelial cells from rabbit eyes.
    Iwatsuka K; Iwamoto H; Kinoshita M; Inada K; Yasueda S; Kakehi K
    Curr Eye Res; 2014 Jul; 39(7):686-94. PubMed ID: 24400666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of cultured rabbit corneal epithelium for drug permeation studies: a comparison with excised rabbit cornea.
    Burgalassi S; Monti D; Brignoccoli A; Fabiani O; Lenzi C; Pirone A; Chetoni P
    J Ocul Pharmacol Ther; 2004 Dec; 20(6):518-32. PubMed ID: 15684811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-interface condition promotes the formation of tight corneal epithelial cell layers for drug transport studies.
    Chang JE; Basu SK; Lee VH
    Pharm Res; 2000 Jun; 17(6):670-6. PubMed ID: 10955839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines.
    Dey S; Patel J; Anand BS; Jain-Vakkalagadda B; Kaliki P; Pal D; Ganapathy V; Mitra AK
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):2909-18. PubMed ID: 12824231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients.
    Nakamura T; Yamada M; Teshima M; Nakashima M; To H; Ichikawa N; Sasaki H
    Biol Pharm Bull; 2007 Dec; 30(12):2360-4. PubMed ID: 18057726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies.
    Yoo JW; Kim YS; Lee SH; Lee MK; Roh HJ; Jhun BH; Lee CH; Kim DD
    Pharm Res; 2003 Oct; 20(10):1690-6. PubMed ID: 14620527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro cell culture model for anti-cataract drug penetration studies.
    Jiang TY; Wang SL; Liu Y; Nie SF; Ito Y; Nagai N; Wu CF
    Pharmazie; 2007 Oct; 62(10):767-72. PubMed ID: 18236782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach.
    Antonescu IE; Rasmussen KF; Neuhoff S; Fretté X; Karlgren M; Bergström CAS; Nielsen CU; Steffansen B
    Mol Pharm; 2019 Nov; 16(11):4636-4650. PubMed ID: 31560549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Human Organotypic Corneal Tissue Model for Ophthalmic Drug Delivery Studies.
    Kaluzhny Y; Kinuthia MW; Truong T; Lapointe AM; Hayden P; Klausner M
    Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):2880-2898. PubMed ID: 30025134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopharmaceutical evaluation of surface active ophthalmic excipients using in vitro and ex vivo corneal models.
    Juretić M; Cetina-Čižmek B; Filipović-Grčić J; Hafner A; Lovrić J; Pepić I
    Eur J Pharm Sci; 2018 Jul; 120():133-141. PubMed ID: 29702232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.