These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 9950867)
1. Modulation of arterial Na+-K+-ATPase-induced [Ca2+]i reduction and relaxation by norepinephrine, ET-1, and PMA. Pérez-Vizcaíno F; Cogolludo A; Tamargo J Am J Physiol; 1999 Feb; 276(2):H651-7. PubMed ID: 9950867 [TBL] [Abstract][Full Text] [Related]
2. Involvement of protein kinase C and Na+/K+-ATPase in the contractile response induced by myricetin in rat isolated aorta. Jiménez R; Zarzuelo A; Galisteo M; Duarte J Planta Med; 2002 Feb; 68(2):133-7. PubMed ID: 11859463 [TBL] [Abstract][Full Text] [Related]
3. Involvement of protein kinase C in reduced relaxant responses to the NO/cyclic GMP pathway in piglet pulmonary arteries contracted by the thromboxane A2-mimetic U46619. Pérez-Vizcaíno F; Villamor E; Duarte J; Tamargo J Br J Pharmacol; 1997 Aug; 121(7):1323-33. PubMed ID: 9257910 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms involved in SNP-induced relaxation and [Ca+]i reduction in piglet pulmonary and systemic arteries. Cogolludo AL; Pérez-Vizcaíno F; Zaragozá-Arnáez F; Ibarra M; López-López G; López-Miranda V; Tamargo J Br J Pharmacol; 2001 Feb; 132(4):959-67. PubMed ID: 11181438 [TBL] [Abstract][Full Text] [Related]
5. The α2 isoform Na,K-ATPase modulates contraction of rat mesenteric small artery via cSrc-dependent Ca Bouzinova EV; Hangaard L; Staehr C; Mazur A; Ferreira A; Chibalin AV; Sandow SL; Xie Z; Aalkjaer C; Matchkov VV Acta Physiol (Oxf); 2018 Sep; 224(1):e13059. PubMed ID: 29480968 [TBL] [Abstract][Full Text] [Related]
6. Cicletanine reverses vasoconstriction induced by the endogenous sodium pump ligand, marinobufagenin, via a protein kinase C dependent mechanism. Bagrov AY; Dmitrieva RI; Dorofeeva NA; Fedorova OV; Lopatin DA; Lakatta EG; Droy-Lefaix MT J Hypertens; 2000 Feb; 18(2):209-15. PubMed ID: 10694190 [TBL] [Abstract][Full Text] [Related]
7. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 2): mechanisms of endothelium-independent vasorelaxation. Akata T; Izumi K; Nakashima M Anesthesiology; 2000 May; 92(5):1441-53. PubMed ID: 10781291 [TBL] [Abstract][Full Text] [Related]
8. Functional properties of cultured endothelial cells derived from large microvessels of human brain. Spatz M; Kawai N; Merkel N; Bembry J; McCarron RM Am J Physiol; 1997 Jan; 272(1 Pt 1):C231-9. PubMed ID: 9038829 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Na+-K+-AtPase in rat aortas: pharmacological and functional evidence. Chen KH; Chen SJ; Wu CC Chin J Physiol; 2005 Jun; 48(2):86-92. PubMed ID: 16201453 [TBL] [Abstract][Full Text] [Related]
10. Arachidonic acid inhibits Na⁺-K⁺-ATPase via cytochrome P-450, lipoxygenase and protein kinase C-dependent pathways in sheep pulmonary artery. Singh TU; Choudhury S; Parida S; Maruti BS; Mishra SK Vascul Pharmacol; 2012; 56(1-2):84-90. PubMed ID: 22155164 [TBL] [Abstract][Full Text] [Related]
11. Force, membrane potential, and [Ca2+]i during activation of rat mesenteric small arteries with norepinephrine, potassium, aluminum fluoride, and phorbol ester. Effects of changes in pHi. Jensen PE; Hughes A; Boonen HC; Aalkjaer C Circ Res; 1993 Aug; 73(2):314-24. PubMed ID: 8330374 [TBL] [Abstract][Full Text] [Related]
12. Lysophosphatidylcholine potentiates vascular contractile responses by enhancing vasoconstrictor-induced increase in cytosolic free Ca2+ in rat aorta. Suenaga H; Kamata K Eur J Pharmacol; 1998 Nov; 361(2-3):217-26. PubMed ID: 9865511 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of direct inhibitory action of ketamine on vascular smooth muscle in mesenteric resistance arteries. Akata T; Izumi K; Nakashima M Anesthesiology; 2001 Aug; 95(2):452-62. PubMed ID: 11506120 [TBL] [Abstract][Full Text] [Related]
14. The role of Na(+), K(+)-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery. Shen H; Liang P; Qiu S; Zhang B; Wang Y; Lv P Vascul Pharmacol; 2016 Jun; 81():53-60. PubMed ID: 26924456 [TBL] [Abstract][Full Text] [Related]
15. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery. Shiraishi Y; Ohashi M; Kanmura Y; Yamaguchi S; Yoshimura N; Itoh T Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Lagaud GJ; Randriamboavonjy V; Roul G; Stoclet JC; Andriantsitohaina R Am J Physiol; 1999 Jan; 276(1):H300-8. PubMed ID: 9887044 [TBL] [Abstract][Full Text] [Related]
17. Pulmonary artery vasoconstriction but not [Ca2+]i signal stimulated by thromboxane A2 is partially resistant to NO. Pérez-Vizcaíno F; Cogolludo AL; Ibarra M; Fajardo S; Tamargo J Pediatr Res; 2001 Oct; 50(4):508-14. PubMed ID: 11568295 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of endothelin-1-induced potentiation of noradrenaline response in rat mesenteric artery. Matsumura Y; Kita S; Okui T Clin Exp Pharmacol Physiol; 2001 Jul; 28(7):540-4. PubMed ID: 11422221 [TBL] [Abstract][Full Text] [Related]
19. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278 [TBL] [Abstract][Full Text] [Related]
20. Regulation of Na(+)-Ca2+ exchange in cultured human mesangial cells. Menè P; Pugliese F; Cinotti GA Am J Physiol; 1991 Sep; 261(3 Pt 2):F466-73. PubMed ID: 1716060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]