These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 9951410)
1. Mass spectrometric analysis of lipo-chitin oligosaccharides--signal molecules mediating the host-specific legume-rhizobium symbiosis. van der Drift KM; Olsthoorn MM; Brüll LP; Blok-Tip L; Thomas-Oates JE Mass Spectrom Rev; 1998; 17(2):75-95. PubMed ID: 9951410 [TBL] [Abstract][Full Text] [Related]
2. Aberrant nodulation response of Vigna umbellata to a Bradyrhizobium japonicum NodZ mutant and nodulation signals. Cohn J; Stokkermans T; Kolli VK; Day RB; Dunlap J; Carlson R; Hughes D; Peters NK; Stacey G Mol Plant Microbe Interact; 1999 Sep; 12(9):766-73. PubMed ID: 10494629 [TBL] [Abstract][Full Text] [Related]
3. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis. Debellé F; Moulin L; Mangin B; Dénarié J; Boivin C Acta Biochim Pol; 2001; 48(2):359-65. PubMed ID: 11732607 [TBL] [Abstract][Full Text] [Related]
4. Novel branched nod factor structure results from alpha-(1-->3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an alpha-(1-->3) fucosyl substituent on a nonterminal backbone residue. Olsthoorn MM; López-Lara IM; Petersen BO; Bock K; Haverkamp J; Spaink HP; Thomas-Oates JE Biochemistry; 1998 Jun; 37(25):9024-32. PubMed ID: 9636046 [TBL] [Abstract][Full Text] [Related]
5. Rhizobium sp. BR816 produces a complex mixture of known and novel lipochitooligosaccharide molecules. Snoeck C; Luyten E; Poinsot V; Savagnac A; Vanderleyden J; Promé JC Mol Plant Microbe Interact; 2001 May; 14(5):678-84. PubMed ID: 11332733 [TBL] [Abstract][Full Text] [Related]
6. Lipochitooligosaccharides and legume Rhizobium symbiosis--a new concept. Chimote V; Kashyap LR Indian J Exp Biol; 2001 May; 39(5):401-9. PubMed ID: 11510121 [TBL] [Abstract][Full Text] [Related]
7. The genetic and biochemical basis for nodulation of legumes by rhizobia. Pueppke SG Crit Rev Biotechnol; 1996; 16(1):1-51. PubMed ID: 8935908 [TBL] [Abstract][Full Text] [Related]
8. Growth temperature regulation of host-specific modifications of rhizobial lipo-chitin oligosaccharides: the function of nodX is temperature regulated. Olsthoorn MM; Stokvis E; Haverkamp J; Spaink HP; Thomas-Oates JE Mol Plant Microbe Interact; 2000 Aug; 13(8):808-20. PubMed ID: 10939252 [TBL] [Abstract][Full Text] [Related]
9. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. López-Lara IM; van den Berg JD; Thomas-Oates JE; Glushka J; Lugtenberg BJ; Spaink HP Mol Microbiol; 1995 Feb; 15(4):627-38. PubMed ID: 7783635 [TBL] [Abstract][Full Text] [Related]
10. Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. López-Lara IM; van der Drift KM; van Brussel AA; Haverkamp J; Lugtenberg BJ; Thomas-Oates JE; Spaink HP Plant Mol Biol; 1995 Nov; 29(3):465-77. PubMed ID: 8534846 [TBL] [Abstract][Full Text] [Related]
11. Structural characterisation of lipo-chitin oligosaccharides isolated from Bradyrhizobium aspalati, microsymbionts of commercially important South African legumes. Boone CM; Olsthoorn MM; Dakora FD; Spaink HP; Thomas-Oates JE Carbohydr Res; 1999 Apr; 317(1-4):155-63. PubMed ID: 10466212 [TBL] [Abstract][Full Text] [Related]