These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1080 related articles for article (PubMed ID: 9951717)
21. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Lea US; Ten Hoopen F; Provan F; Kaiser WM; Meyer C; Lillo C Planta; 2004 May; 219(1):59-65. PubMed ID: 14767769 [TBL] [Abstract][Full Text] [Related]
22. Mechanism and importance of post-translational regulation of nitrate reductase. Lillo C; Meyer C; Lea US; Provan F; Oltedal S J Exp Bot; 2004 Jun; 55(401):1275-82. PubMed ID: 15107452 [TBL] [Abstract][Full Text] [Related]
23. Compensation of decreased triose phosphate/phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco. Häusler RE; Schlieben NH; Schulz B; Flügge UI Planta; 1998 Mar; 204(3):366-76. PubMed ID: 9530880 [TBL] [Abstract][Full Text] [Related]
24. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Häusler RE; Schlieben NH; Nicolay P; Fischer K; Fischer KL; Flügge UI Planta; 2000 Feb; 210(3):371-82. PubMed ID: 10750894 [TBL] [Abstract][Full Text] [Related]
25. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Agüera E; Cabello P; de la Haba P Physiol Plant; 2010 Mar; 138(3):256-67. PubMed ID: 20051027 [TBL] [Abstract][Full Text] [Related]
26. Tobacco transformants with strongly decreased expression of pyrophosphate:fructose-6-phosphate expression in the base of their young growing leaves contain much higher levels of fructose-2,6-bisphosphate but no major changes in fluxes. Nielsen TH; Stitt M Planta; 2001 Nov; 214(1):106-16. PubMed ID: 11762159 [TBL] [Abstract][Full Text] [Related]
27. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Camacho-Cristobal JJ; Gonzalez-Fontes A Planta; 1999 Oct; 209(4):528-36. PubMed ID: 10550635 [TBL] [Abstract][Full Text] [Related]
28. Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Kruse J; Kopriva S; Hänsch R; Krauss GJ; Mendel RR; Rennenberg H Plant Biol (Stuttg); 2007 Sep; 9(5):638-46. PubMed ID: 17853363 [TBL] [Abstract][Full Text] [Related]
29. Glutamine and alpha-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-alpha-ketoglutarate aminotransferase. Ferrario-Méry S; Masclaux C; Suzuki A; Valadier MH; Hirel B; Foyer CH Planta; 2001 Jun; 213(2):265-71. PubMed ID: 11469592 [TBL] [Abstract][Full Text] [Related]
30. The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants. Santos-Filho PR; Saviani EE; Salgado I; Oliveira HC Amino Acids; 2014 Apr; 46(4):1121-9. PubMed ID: 24468931 [TBL] [Abstract][Full Text] [Related]
31. Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Stitt M; Gibon Y; Lunn JE; Piques M Funct Plant Biol; 2007 Jun; 34(6):526-549. PubMed ID: 32689382 [TBL] [Abstract][Full Text] [Related]
32. Control of nitrate reductase by circadian and diurnal rhythms in tomato. Tucker DE; Allen DJ; Ort DR Planta; 2004 Jun; 219(2):277-85. PubMed ID: 14963706 [TBL] [Abstract][Full Text] [Related]
33. Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Cookson SJ; Williams LE; Miller AJ Plant Physiol; 2005 Jun; 138(2):1097-105. PubMed ID: 15908593 [TBL] [Abstract][Full Text] [Related]
34. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. Prosser IM; Purves JV; Saker LR; Clarkson DT J Exp Bot; 2001 Jan; 52(354):113-21. PubMed ID: 11181720 [TBL] [Abstract][Full Text] [Related]
35. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation. Lillo C; Lea US; Leydecker MT; Meyer C Plant J; 2003 Sep; 35(5):566-73. PubMed ID: 12940950 [TBL] [Abstract][Full Text] [Related]
36. Adaptations of Photosynthetic Electron Transport, Carbon Assimilation, and Carbon Partitioning in Transgenic Nicotiana plumbaginifolia Plants to Changes in Nitrate Reductase Activity. Foyer CH; Lescure JC; Lefebvre C; Morot-Gaudry JF; Vincentz M; Vaucheret H Plant Physiol; 1994 Jan; 104(1):171-178. PubMed ID: 12232070 [TBL] [Abstract][Full Text] [Related]
37. Regulation of nitrate reductase transcript levels by glutamine accumulating in the leaves of a ferredoxin-dependent glutamate synthase-deficient gluS mutant of Arabidopsis thaliana, and by glutamine provided via the roots. Dzuibany C; Haupt S; Fock H; Biehler K; Migge A; Becker TW Planta; 1998 Nov; 206(4):515-22. PubMed ID: 9821686 [TBL] [Abstract][Full Text] [Related]
38. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. Tercé-Laforgue T; Bedu M; Dargel-Grafin C; Dubois F; Gibon Y; Restivo FM; Hirel B Plant Cell Physiol; 2013 Oct; 54(10):1635-47. PubMed ID: 23893023 [TBL] [Abstract][Full Text] [Related]
39. Isolation and characterization of Nicotiana plumbaginifolia nitrate reductase-deficient mutants: genetic and biochemical analysis of the NIA complementation group. Gabard J; Marion-Poll A; Chérel I; Meyer C; Müller A; Caboche M Mol Gen Genet; 1987 Oct; 209(3):596-606. PubMed ID: 17193714 [TBL] [Abstract][Full Text] [Related]
40. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Sun J; Gibson KM; Kiirats O; Okita TW; Edwards GE Plant Physiol; 2002 Nov; 130(3):1573-83. PubMed ID: 12428022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]