These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9952012)

  • 1. Numeric flow simulation for an innovative ventricular assist system secondary impeller.
    Nakamura S; Ding W; Smith WA; Golding LA
    ASAIO J; 1999; 45(1):74-8. PubMed ID: 9952012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow analysis for the secondary impeller of an IVAS heart pump.
    Nakamura S; Ding W; Smith WA; Golding LA
    ASAIO J; 1997; 43(5):M773-7. PubMed ID: 9360151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.
    Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P
    Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-indicator analysis of mechanical blood damage with five clinical ventricular assist devices.
    Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y
    Comput Biol Med; 2022 Dec; 151(Pt A):106271. PubMed ID: 36347061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device.
    Song X; Untaroiu A; Wood HG; Allaire PE; Throckmorton AL; Day SW; Olsen DB
    ASAIO J; 2004; 50(3):215-24. PubMed ID: 15171472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIV measurements of flow in a centrifugal blood pump: steady flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement.
    Wernicke JT; Meier D; Mizuguchi K; Damm G; Aber G; Benkowski R; Nosé Y; Noon GP; DeBakey ME
    Artif Organs; 1995 Feb; 19(2):161-77. PubMed ID: 7763196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Numerical simulation and performance analysis of mixed flow blood pump].
    Luo J; Huang D; Xu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):296-303. PubMed ID: 32329282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow visualization evaluation of secondary flow in a centrifugal blood pump.
    Sakuma I; Fukui Y; Ohara Y; Makinouchi K; Takatani S; Nosé Y
    ASAIO J; 1993; 39(3):M433-7. PubMed ID: 8268573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device.
    Hsu PL; Graefe R; Boehning F; Wu C; Parker J; Autschbach R; Schmitz-Rode T; Steinseifer U
    Int J Artif Organs; 2014 Sep; 37(9):697-705. PubMed ID: 25262631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro performance of the Baylor/NASA axial flow pump.
    Damm G; Mizuguchi K; Bozeman R; Akkerman J; Aber G; Svejkovsky P; Takatani S; Nosé Y; Noon GP; DeBakey ME
    Artif Organs; 1993 Jul; 17(7):609-13. PubMed ID: 8338435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.