BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 9952441)

  • 1. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration.
    Medina J; Bargues M; Terol J; Pérez-Alonso M; Salinas J
    Plant Physiol; 1999 Feb; 119(2):463-70. PubMed ID: 9952441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.
    Gilmour SJ; Zarka DG; Stockinger EJ; Salazar MP; Houghton JM; Thomashow MF
    Plant J; 1998 Nov; 16(4):433-42. PubMed ID: 9881163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.
    Stockinger EJ; Gilmour SJ; Thomashow MF
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):1035-40. PubMed ID: 9023378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon.
    Novillo F; Medina J; Salinas J
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):21002-7. PubMed ID: 18093929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
    Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF
    Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.
    Fowler S; Thomashow MF
    Plant Cell; 2002 Aug; 14(8):1675-90. PubMed ID: 12172015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis.
    Alonso-Blanco C; Gomez-Mena C; Llorente F; Koornneef M; Salinas J; Martínez-Zapater JM
    Plant Physiol; 2005 Nov; 139(3):1304-12. PubMed ID: 16244146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid.
    Xiao H; Siddiqua M; Braybrook S; Nassuth A
    Plant Cell Environ; 2006 Jul; 29(7):1410-21. PubMed ID: 17080962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis.
    Novillo F; Alonso JM; Ecker JR; Salinas J
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3985-90. PubMed ID: 15004278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements.
    Pennycooke JC; Cheng H; Roberts SM; Yang Q; Rhee SY; Stockinger EJ
    Plant Mol Biol; 2008 Jul; 67(5):483-97. PubMed ID: 18415686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Zhao C; Zhang Z; Xie S; Si T; Li Y; Zhu JK
    Plant Physiol; 2016 Aug; 171(4):2744-59. PubMed ID: 27252305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence.
    Canella D; Gilmour SJ; Kuhn LA; Thomashow MF
    Biochim Biophys Acta; 2010; 1799(5-6):454-62. PubMed ID: 19948259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis.
    Dong MA; Farré EM; Thomashow MF
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7241-6. PubMed ID: 21471455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities.
    Gilmour SJ; Fowler SG; Thomashow MF
    Plant Mol Biol; 2004 Mar; 54(5):767-81. PubMed ID: 15356394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
    Gilmour SJ; Sebolt AM; Salazar MP; Everard JD; Thomashow MF
    Plant Physiol; 2000 Dec; 124(4):1854-65. PubMed ID: 11115899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Gehan MA; Park S; Gilmour SJ; An C; Lee CM; Thomashow MF
    Plant J; 2015 Nov; 84(4):682-93. PubMed ID: 26369909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression.
    Stockinger EJ; Mao Y; Regier MK; Triezenberg SJ; Thomashow MF
    Nucleic Acids Res; 2001 Apr; 29(7):1524-33. PubMed ID: 11266554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif.
    Knight H; Veale EL; Warren GJ; Knight MR
    Plant Cell; 1999 May; 11(5):875-86. PubMed ID: 10330472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Park S; Lee CM; Doherty CJ; Gilmour SJ; Kim Y; Thomashow MF
    Plant J; 2015 Apr; 82(2):193-207. PubMed ID: 25736223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis.
    Haake V; Cook D; Riechmann JL; Pineda O; Thomashow MF; Zhang JZ
    Plant Physiol; 2002 Oct; 130(2):639-48. PubMed ID: 12376631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.