These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9952713)

  • 21. Mechanisms Suppressing Superheavy Element Yields in Cold Fusion Reactions.
    Banerjee K; Hinde DJ; Dasgupta M; Simpson EC; Jeung DY; Simenel C; Swinton-Bland BMA; Williams E; Carter IP; Cook KJ; David HM; Düllmann CE; Khuyagbaatar J; Kindler B; Lommel B; Prasad E; Sengupta C; Smith JF; Vo-Phuoc K; Walshe J; Yakushev A
    Phys Rev Lett; 2019 Jun; 122(23):232503. PubMed ID: 31298876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lanthanides as Catalysts: Guided Ion Beam and Theoretical Studies of Sm
    Armentrout PB; Cox RM; Sweeny BC; Ard SG; Shuman NS; Viggiano AA
    J Phys Chem A; 2018 Jan; 122(3):737-749. PubMed ID: 29244499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoproduction of quarkonium in proton-proton and nucleus-nucleus collisions.
    Klein SR; Nystrand J
    Phys Rev Lett; 2004 Apr; 92(14):142003. PubMed ID: 15089531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A guided-ion beam study of the reactions of Xe(+) and Xe(2+) with NH(3) at hyperthermal collision energies.
    Levandier DJ; Chiu YH
    J Chem Phys; 2010 Oct; 133(15):154304. PubMed ID: 20969383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extrapolation of hadron production in nucleus-nucleus collisions to energies reached at the BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider with the two-component dual parton model.
    Kawrakov I; Möhring H; Ranft J
    Phys Rev D Part Fields; 1993 May; 47(9):3849-3859. PubMed ID: 10016008
    [No Abstract]   [Full Text] [Related]  

  • 27. Unexpected behavior of heavy-ion fusion cross sections at extreme sub-barrier energies.
    Jiang CL; Esbensen H; Rehm KE; Back BB; Janssens RV; Caggiano JA; Collon P; Greene J; Heinz AM; Henderson DJ; Nishinaka I; Pennington TO; Seweryniak D
    Phys Rev Lett; 2002 Jul; 89(5):052701. PubMed ID: 12144438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comment on "Unexpected behavior of heavy-ion fusion cross sections at extreme sub-barrier energies".
    Lin CJ
    Phys Rev Lett; 2003 Nov; 91(22):229201; discussion 229202. PubMed ID: 14683276
    [No Abstract]   [Full Text] [Related]  

  • 29. Fusion cross sections for 46,50Ti+90Zr,93Nb and some systematics of heavy-ion fusion at barrier and subbarrier energies.
    Stelson PH; Kim HJ; Beckerman M; Shapira D; Robinson RL
    Phys Rev C Nucl Phys; 1990 Apr; 41(4):1584-1599. PubMed ID: 9966505
    [No Abstract]   [Full Text] [Related]  

  • 30. Excitation Energies of UO
    Zhang S; Wang F
    J Phys Chem A; 2017 May; 121(20):3966-3975. PubMed ID: 28485938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of neutron flow in the enhancement of heavy ion fusion at energies below the Coulomb barrier and the systematics of threshold barriers.
    Shapira D; Stelson PH
    Phys Rev C Nucl Phys; 1993 Apr; 47(4):1666-1671. PubMed ID: 9968613
    [No Abstract]   [Full Text] [Related]  

  • 32. The inter-relationship between triplet energies and spin chemistry.
    Bargon J
    Photochem Photobiol Sci; 2006 Oct; 5(10):970-8. PubMed ID: 17019477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of channel coupling on spin distribution at and above Coulomb barrier energies.
    Mohanty AK; Kataria SK; Samant MS
    Phys Rev C Nucl Phys; 1993 Sep; 48(3):1445-1448. PubMed ID: 9968978
    [No Abstract]   [Full Text] [Related]  

  • 34. Assessment of Orbital-Optimized MP2.5 for Thermochemistry and Kinetics: Dramatic Failures of Standard Perturbation Theory Approaches for Aromatic Bond Dissociation Energies and Barrier Heights of Radical Reactions.
    Soydaş E; Bozkaya U
    J Chem Theory Comput; 2015 Apr; 11(4):1564-73. PubMed ID: 26574366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-barrier fusion of Sn + Ni and Te + Ni systems: examining the correlation between nucleon transfer and fusion enhancement.
    Kohley Z; Liang JF; Shapira D; Varner RL; Gross CJ; Allmond JM; Caraley AL; Coello EA; Favela F; Lagergren K; Mueller PE
    Phys Rev Lett; 2011 Nov; 107(20):202701. PubMed ID: 22181728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New SCS- and SOS-MP2 Coefficients Fitted to Semi-Coulombic Systems.
    Rigby J; Izgorodina EI
    J Chem Theory Comput; 2014 Aug; 10(8):3111-22. PubMed ID: 26588282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of fusion-evaporation and direct-interaction nuclear reactions using high-intensity laser-plasma-accelerated ion beams.
    McKenna P; Ledingham KW; McCanny T; Singhal RP; Spencer I; Santala MI; Beg FN; Krushelnick K; Tatarakis M; Wei MS; Clark EL; Clarke RJ; Lancaster KL; Norreys PA; Spohr K; Chapman R; Zepf M
    Phys Rev Lett; 2003 Aug; 91(7):075006. PubMed ID: 12935029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunneling molecular dynamics in the light of the corpuscular-wave dualism theory.
    Latanowicz L; Filipek P
    J Phys Chem A; 2007 Aug; 111(32):7695-702. PubMed ID: 17629253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signature of non-compound-nucleus fission at sub-barrier energies.
    Liu Z; Zhang H; Xu J; Qian X; Qiao Y; Lin C; Xu K
    Phys Rev C Nucl Phys; 1994 Sep; 50(3):1717-1719. PubMed ID: 9969835
    [No Abstract]   [Full Text] [Related]  

  • 40. Elucidating Potential Energy Surfaces for Singlet O
    Lu W; Tsai IM; Sun Y; Zhou W; Liu J
    J Phys Chem B; 2017 Aug; 121(33):7844-7854. PubMed ID: 28724285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.