These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9955123)

  • 1. Deep inelastic electron scattering in the distorted-wave Born approximation: An analytic approach.
    Traini M; Turck-Chièze S; Zghiche A
    Phys Rev C Nucl Phys; 1988 Dec; 38(6):2799-2812. PubMed ID: 9955123
    [No Abstract]   [Full Text] [Related]  

  • 2. Distorted wave Born and three-body distorted wave Born approximation calculations of the fully differential cross section for electron-impact ionization of nitrogen molecules.
    Gao J; Madison DH; Peacher JL
    J Chem Phys; 2005 Nov; 123(20):204314. PubMed ID: 16351263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Born approximation for the scattering of ultrasound in elastic solids.
    Huang R; Schmerr LW; Sedov A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e981-4. PubMed ID: 16782157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No surprise in the first Born approximation for electron scattering.
    Lentzen M
    Ultramicroscopy; 2014 Jan; 136():201-10. PubMed ID: 24216157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function.
    Emfietzoglou D; Papamichael G; Nikjoo H
    Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distorted-wave impulse approximation and coupled-channels analysis of inelastic pion scattering from 18O.
    Chakravarti S; Dehnhard D; Franey MA; Seestrom-Morris SJ; Holtkamp DB; Blilie CL; Hayes AC; Morris CL; Millener DJ
    Phys Rev C Nucl Phys; 1987 Jun; 35(6):2197-2211. PubMed ID: 9954016
    [No Abstract]   [Full Text] [Related]  

  • 7. Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 17O ions.
    Crespi FC; Bracco A; Nicolini R; Mengoni D; Pellegri L; Lanza EG; Leoni S; Maj A; Kmiecik M; Avigo R; Benzoni G; Blasi N; Boiano C; Bottoni S; Brambilla S; Camera F; Ceruti S; Giaz A; Million B; Morales AI; Vandone V; Wieland O; Bednarczyk P; Ciemała M; Grebosz J; Krzysiek M; Mazurek K; Zieblinski M; Bazzacco D; Bellato M; Birkenbach B; Bortolato D; Calore E; Cederwall B; Charles L; de Angelis G; Désesquelles P; Eberth J; Farnea E; Gadea A; Görgen A; Gottardo A; Isocrate R; Jolie J; Jungclaus A; Karkour N; Korten W; Menegazzo R; Michelagnoli C; Molini P; Napoli DR; Pullia A; Recchia F; Reiter P; Rosso D; Sahin E; Salsac MD; Siebeck B; Siem S; Simpson J; Söderström PA; Stezowski O; Theisen Ch; Ur C; Valiente-Dobón JJ
    Phys Rev Lett; 2014 Jul; 113(1):012501. PubMed ID: 25032921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross sections and partial kerma factors for elastic and inelastic neutron scattering from nitrogen, oxygen and calcium at En = 21.6 MeV.
    Olsson N; Ramström E; Trostell B
    Phys Med Biol; 1990 Sep; 35(9):1255-70. PubMed ID: 2236207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZooScatR-An r package for modelling the scattering properties of weak scattering targets using the distorted wave Born approximation.
    Gastauer S; Chu D; Cox MJ
    J Acoust Soc Am; 2019 Jan; 145(1):EL102. PubMed ID: 30710911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the distorted wave born approximation to predict scattering by inhomogeneous objects: application to squid.
    Jones BA; Lavery AC; Stanton TK
    J Acoust Soc Am; 2009 Jan; 125(1):73-88. PubMed ID: 19173396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of a modified Born approximation for a pulsed plane wave in acoustic scattering problems.
    Saha RK; Sharma SK
    Phys Med Biol; 2005 Jun; 50(12):2823-36. PubMed ID: 15930605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of pygmy dipole and M1 resonances in 90Zr by a high-resolution inelastic proton scattering near 0°.
    Iwamoto C; Utsunomiya H; Tamii A; Akimune H; Nakada H; Shima T; Yamagata T; Kawabata T; Fujita Y; Matsubara H; Shimbara Y; Nagashima M; Suzuki T; Fujita H; Sakuda M; Mori T; Izumi T; Okamoto A; Kondo T; Bilgier B; Kozer HC; Lui YW; Hatanaka K
    Phys Rev Lett; 2012 Jun; 108(26):262501. PubMed ID: 23004969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Analytic distorted wave approximation for pion scattering from nuclei.
    Di Marzio F ; Amos K
    Phys Rev C Nucl Phys; 1985 Sep; 32(3):1106. PubMed ID: 9971934
    [No Abstract]   [Full Text] [Related]  

  • 14. Analytic distorted wave approximation for pion scattering from nuclei.
    Di Marzio F ; Amos K
    Phys Rev C Nucl Phys; 1985 Feb; 31(2):561-569. PubMed ID: 9952551
    [No Abstract]   [Full Text] [Related]  

  • 15. A surprise in the first Born approximation for electron scattering.
    Treacy MM; Van Dyck D
    Ultramicroscopy; 2012 Aug; 119():57-62. PubMed ID: 22206601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the reaction (3)He(↑)(e,e')X.
    Katich J; Qian X; Zhao YX; Allada K; Aniol K; Annand JR; Averett T; Benmokhtar F; Bertozzi W; Bradshaw PC; Bosted P; Camsonne A; Canan M; Cates GD; Chen C; Chen JP; Chen W; Chirapatpimol K; Chudakov E; Cisbani E; Cornejo JC; Cusanno F; Dalton MM; Deconinck W; de Jager CW; De Leo R; Deng X; Deur A; Ding H; Dolph PA; Dutta C; Dutta D; El Fassi L; Frullani S; Gao H; Garibaldi F; Gaskell D; Gilad S; Gilman R; Glamazdin O; Golge S; Guo L; Hamilton D; Hansen O; Higinbotham DW; Holmstrom T; Huang J; Huang M; Ibrahim HF; Iodice M; Jiang X; Jin G; Jones MK; Kelleher A; Kim W; Kolarkar A; Korsch W; LeRose JJ; Li X; Li Y; Lindgren R; Liyanage N; Long E; Lu HJ; Margaziotis DJ; Markowitz P; Marrone S; McNulty D; Meziani ZE; Michaels R; Moffit B; Muñoz Camacho C; Nanda S; Narayan A; Nelyubin V; Norum B; Oh Y; Osipenko M; Parno D; Peng JC; Phillips SK; Posik M; Puckett AJ; Qiang Y; Rakhman A; Ransome RD; Riordan S; Saha A; Sawatzky B; Schulte E; Shahinyan A; Shabestari MH; Širca S; Stepanyan S; Subedi R; Sulkosky V; Tang LG; Tobias A; Urciuoli GM; Vilardi I; Wang K; Wang Y; Wojtsekhowski B; Yan X; Yao H; Ye Y; Ye Z; Yuan L; Zhan X; Zhang Y; Zhang YW; Zhao B; Zheng X; Zhu L; Zhu X; Zong X
    Phys Rev Lett; 2014 Jul; 113(2):022502. PubMed ID: 25062169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni.
    Vandebrouck M; Gibelin J; Khan E; Achouri NL; Baba H; Beaumel D; Blumenfeld Y; Caamaño M; Càceres L; Colò G; Delaunay F; Fernandez-Dominguez B; Garg U; Grinyer GF; Harakeh MN; Kalantar-Nayestanaki N; Keeley N; Mittig W; Pancin J; Raabe R; Roger T; Roussel-Chomaz P; Savajols H; Sorlin O; Stodel C; Suzuki D; Thomas JC
    Phys Rev Lett; 2014 Jul; 113(3):032504. PubMed ID: 25083638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inconsistency between linearized Thomas-Fermi approximation and electron-ionized impurity scattering rate in the first Born approximation.
    Marchetti G
    J Phys Condens Matter; 2018 Nov; 30(47):475701. PubMed ID: 30378569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of conduction electrons to two-level systems formed by hydrogen: a scattering approach.
    Nagy I; Zawadowski A
    J Phys Condens Matter; 2009 Apr; 21(17):175701. PubMed ID: 21825429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superelastic electron scattering within a magnetic angle changer: determination of the angular momentum transferred during electron excitation over all scattering angles.
    Hussey M; Murray A; MacGillivray W; King GC
    Phys Rev Lett; 2007 Sep; 99(13):133202. PubMed ID: 17930586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.