These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9955146)
1. Approximations in the quasiparticle random phase evaluation of double beta decay rates. Yee K; Engel J; Vogel P Phys Rev C Nucl Phys; 1988 Dec; 38(6):2971-2973. PubMed ID: 9955146 [No Abstract] [Full Text] [Related]
2. Renormalized quasiparticle random phase approximation and double beta decay: A critical analysis of double Fermi transitions. Hirsch JG; Hess PO; Civitarese O Phys Rev C Nucl Phys; 1996 Oct; 54(4):1976-1981. PubMed ID: 9971546 [No Abstract] [Full Text] [Related]
3. General behavior of double beta decay amplitudes in the quasiparticle random phase approximation. Krmpotic F Phys Rev C Nucl Phys; 1993 Sep; 48(3):1452-1455. PubMed ID: 9968980 [No Abstract] [Full Text] [Related]
5. Neutrinoless double beta decay within the quasiparticle random-phase approximation with proton-neutron pairing. Pantis G; Simkovic F; Vergados JD; Faessler A Phys Rev C Nucl Phys; 1996 Feb; 53(2):695-707. PubMed ID: 9970988 [No Abstract] [Full Text] [Related]
6. Quasiparticle random phase approximation analysis of the double beta decay of 100Mo to the ground state and excited states of 100Ru. Suhonen J; Civitarese O Phys Rev C Nucl Phys; 1994 Jun; 49(6):3055-3060. PubMed ID: 9969584 [No Abstract] [Full Text] [Related]
7. Calculation of beta -delayed fission of 180Tl and application of the quasiparticle random-phase approximation to the prediction of beta +-decay half-lives of neutron-deficient isotopes. Staudt A; Hirsch M; Muto K; Klapdor-Kleingrothaus HV Phys Rev Lett; 1990 Sep; 65(13):1543-1546. PubMed ID: 10042297 [No Abstract] [Full Text] [Related]
8. Influence of pairing on the nuclear matrix elements of the neutrinoless betabeta decays. Caurier E; Menéndez J; Nowacki F; Poves A Phys Rev Lett; 2008 Feb; 100(5):052503. PubMed ID: 18352367 [TBL] [Abstract][Full Text] [Related]
9. Theory of neutrinoless double-beta decay. Vergados JD; Ejiri H; Simkovic F Rep Prog Phys; 2012 Oct; 75(10):106301. PubMed ID: 22960254 [TBL] [Abstract][Full Text] [Related]
10. Nonexponential quasiparticle decay and phase relaxation in low-dimensional conductors. Montambaux G; Akkermans E Phys Rev Lett; 2005 Jul; 95(1):016403. PubMed ID: 16090636 [TBL] [Abstract][Full Text] [Related]
16. Quasiparticle energies and lifetimes in a metallic chain model of a tunnel junction. Szepieniec M; Yeriskin I; Greer JC J Chem Phys; 2013 Apr; 138(14):144105. PubMed ID: 24981526 [TBL] [Abstract][Full Text] [Related]
18. Approximations for double-beta-decay formulas. Doi M; Kotani T; Takasugi E Phys Rev C Nucl Phys; 1988 May; 37(5):2104-2120. PubMed ID: 9954677 [No Abstract] [Full Text] [Related]
19. Towards numerically accurate many-body perturbation theory: short-range correlation effects. Gulans A J Chem Phys; 2014 Oct; 141(16):164127. PubMed ID: 25362292 [TBL] [Abstract][Full Text] [Related]
20. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations. Peng D; Yang Y; Zhang P; Yang W J Chem Phys; 2014 Dec; 141(21):214102. PubMed ID: 25481124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]