These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9957321)

  • 1. Remarks on dynamical breaking of chiral symmetry and pion properties in the Nambu and Jona-Lasinio model.
    Bernard V
    Phys Rev D Part Fields; 1986 Sep; 34(5):1601-1605. PubMed ID: 9957321
    [No Abstract]   [Full Text] [Related]  

  • 2. N-quantum calculation of dynamical symmetry breaking in the Nambu-Jona-Lasinio model.
    Greenberg OW; Mohapatra PK
    Phys Rev D Part Fields; 1986 Aug; 34(4):1136-1140. PubMed ID: 9957258
    [No Abstract]   [Full Text] [Related]  

  • 3. Chiral symmetry breaking in the Nambu-Jona-Lasinio model in curved spacetime with a nontrivial topology.
    Elizalde E; Leseduarte S; Odintsov SD
    Phys Rev D Part Fields; 1994 May; 49(10):5551-5558. PubMed ID: 10016873
    [No Abstract]   [Full Text] [Related]  

  • 4. Nambu-Jona-Lasinio model compared with chiral perturbation theory: The pion radius in SU(2) revisited.
    Hippe H; Klevansky SP
    Phys Rev C Nucl Phys; 1995 Oct; 52(4):2172-2184. PubMed ID: 9970731
    [No Abstract]   [Full Text] [Related]  

  • 5. Chiral symmetry restoration in the interpolated Nambu-Jona-Lasinio model.
    Pinto MB
    Phys Rev D Part Fields; 1994 Dec; 50(12):7673-7678. PubMed ID: 10017749
    [No Abstract]   [Full Text] [Related]  

  • 6. Chiral-symmetry restoration in the Nambu-Jona-Lasinio model with a constant electromagnetic field.
    Klevansky SP; Lemmer RH
    Phys Rev D Part Fields; 1989 Jun; 39(11):3478-3489. PubMed ID: 9959595
    [No Abstract]   [Full Text] [Related]  

  • 7. Pion and quark electromagnetic self-masses in the Nambu-Jona-Lasinio model.
    Dmitrasinovic V; Schulze H; Tegen R; Lemmer RH
    Phys Rev D Part Fields; 1995 Sep; 52(5):2855-2877. PubMed ID: 10019501
    [No Abstract]   [Full Text] [Related]  

  • 8. Dispersion relation of the pion in the Nambu-Jona-Lasinio model.
    da Providncia J ; Ruivo MC; de Sousa CA
    Phys Rev D Part Fields; 1988 Oct; 38(8):2646-2647. PubMed ID: 9959431
    [No Abstract]   [Full Text] [Related]  

  • 9. UA(1) breaking and scalar mesons in the Nambu and Jona-Lasinio model.
    Dmitrasinovic V
    Phys Rev C Nucl Phys; 1996 Mar; 53(3):1383-1396. PubMed ID: 9971077
    [No Abstract]   [Full Text] [Related]  

  • 10. Chiral perturbation theory and the SU(2) Nambu-Jona-Lasinio model: A comparison.
    Müller J; Klevansky SP
    Phys Rev C Nucl Phys; 1994 Jul; 50(1):410-422. PubMed ID: 9969674
    [No Abstract]   [Full Text] [Related]  

  • 11. Extended Nambu-Jona-Lasinio model and hidden local symmetry of low energy QCD.
    Wakamatsu M
    Phys Rev D Part Fields; 1996 Nov; 54(10):6459-6474. PubMed ID: 10020648
    [No Abstract]   [Full Text] [Related]  

  • 12. Quasiparticle properties of the quarks of the Nambu-Jona-Lasinio model.
    Cao NW; Shakin CM; Sun WD
    Phys Rev C Nucl Phys; 1992 Dec; 46(6):2535-2546. PubMed ID: 9968384
    [No Abstract]   [Full Text] [Related]  

  • 13. Static properties of the nucleon in the Faddeev approach based on the Nambu-Jona-Lasinio model.
    Asami H; Ishii N; Bentz W; Yazaki K
    Phys Rev C Nucl Phys; 1995 Jun; 51(6):3388-3392. PubMed ID: 9970442
    [No Abstract]   [Full Text] [Related]  

  • 14. Critical behavior in the dense planar Nambu--Jona-Lasinio model.
    Hands S; Lucini B; Morrison S
    Phys Rev Lett; 2001 Jan; 86(5):753-6. PubMed ID: 11177932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral phase transition from string theory.
    Parnachev A; Sahakyan DA
    Phys Rev Lett; 2006 Sep; 97(11):111601. PubMed ID: 17025875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic field theory for a dirac particle propagating in gauge field disorder.
    Guhr T; Wilke T; Weidenmuller HA
    Phys Rev Lett; 2000 Sep; 85(11):2252-5. PubMed ID: 10977984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous electromagnetic superconductivity of vacuum in a strong magnetic field: evidence from the Nambu-Jona-Lasinio model.
    Chernodub MN
    Phys Rev Lett; 2011 Apr; 106(14):142003. PubMed ID: 21561186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambiguity of calculations in the Nambu-Jona-Lasinio model and its singular relation to the linear sigma model.
    Willey RS
    Phys Rev D Part Fields; 1993 Sep; 48(6):2877-2880. PubMed ID: 10016535
    [No Abstract]   [Full Text] [Related]  

  • 19. Gross-Neveu model and the supersymmetric and nonsupersymmetric Nambu-Jona-Lasinio model in a magnetic field.
    Elias V; McKeon DG; Miransky VA; Shovkovy IA
    Phys Rev D Part Fields; 1996 Dec; 54(12):7884-7893. PubMed ID: 10020797
    [No Abstract]   [Full Text] [Related]  

  • 20. More on the sigma to fermion mass ratio in the linear sigma model and Nambu-Jona-Lasinio model.
    Fishbane PM; Norton RE
    Phys Rev D Part Fields; 1993 Nov; 48(10):4924-4932. PubMed ID: 10016145
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.