These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9957941)

  • 1. Classical adiabatic holonomy and its canonical structure.
    Gozzi E; Thacker WD
    Phys Rev D Part Fields; 1987 Apr; 35(8):2398-2406. PubMed ID: 9957941
    [No Abstract]   [Full Text] [Related]  

  • 2. Classical-quantum correspondence in holonomy effects: Reply to "Comment on 'Adiabatic holonomy and evolution of fermionic coherent state' ".
    Abe S
    Phys Rev D Part Fields; 1992 Jul; 46(2):876-877. PubMed ID: 10015003
    [No Abstract]   [Full Text] [Related]  

  • 3. Classical adiabatic holonomy in a Grassmannian system.
    Gozzi E; Thacker WD
    Phys Rev D Part Fields; 1987 Apr; 35(8):2388-2397. PubMed ID: 9957940
    [No Abstract]   [Full Text] [Related]  

  • 4. Classical adiabatic holonomy in field theory.
    Gozzi E; Rohrlich D; Thacker WD
    Phys Rev D Part Fields; 1990 Oct; 42(8):2752-2762. PubMed ID: 10013147
    [No Abstract]   [Full Text] [Related]  

  • 5. Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops.
    Tanaka A; Kim SW; Cheon T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042904. PubMed ID: 24827310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric phase in eigenspace evolution of invariant and adiabatic action operators.
    Teo JC; Wang ZD
    Phys Rev Lett; 2005 Jul; 95(5):050406. PubMed ID: 16090857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adiabatic holonomy and evolution of fermionic coherent state.
    Abe S
    Phys Rev D Part Fields; 1989 Apr; 39(8):2327-2331. PubMed ID: 9959914
    [No Abstract]   [Full Text] [Related]  

  • 8. Comment on "Adiabatic holonomy and evolution of fermionic coherent state".
    Maamache M; Provost J; Vallée G
    Phys Rev D Part Fields; 1992 Jul; 46(2):873-875. PubMed ID: 10015002
    [No Abstract]   [Full Text] [Related]  

  • 9. On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics.
    Cotton SJ; Liang R; Miller WH
    J Chem Phys; 2017 Aug; 147(6):064112. PubMed ID: 28810754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Accelerated Sampling and Amplified Collective Motion with Adiabatic Reweighting to Obtain Canonical Distributions and Ensemble Averages.
    Hu Y; Hong W; Shi Y; Liu H
    J Chem Theory Comput; 2012 Oct; 8(10):3777-92. PubMed ID: 26593019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: charge-bond resonance in monomethine cyanines.
    Olsen S
    J Chem Phys; 2015 Jan; 142(4):044116. PubMed ID: 25637978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetric quasi-classical dynamics with quasi-diabatic propagation scheme.
    Sandoval C JS; Mandal A; Huo P
    J Chem Phys; 2018 Jul; 149(4):044115. PubMed ID: 30068182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear evolution of quantum states in the adiabatic regime.
    Liu J; Wu B; Niu Q
    Phys Rev Lett; 2003 May; 90(17):170404. PubMed ID: 12786058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational deexcitation and rotational excitation of H2 and D2 scattered from Cu(111): adiabatic versus non-adiabatic dynamics.
    Muzas AS; Juaristi JI; Alducin M; Díez Muiño R; Kroes GJ; Díaz C
    J Chem Phys; 2012 Aug; 137(6):064707. PubMed ID: 22897302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimolecular recombination reactions: K-adiabatic and K-active forms of RRKM theory, nonstatistical aspects, low-pressure rates, and time-dependent survival probabilities with application to ozone. 2.
    Ghaderi N; Marcus RA
    J Phys Chem A; 2014 Nov; 118(44):10166-78. PubMed ID: 25215533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics.
    Albert J; Kaiser D; Engel V
    J Chem Phys; 2016 May; 144(17):171103. PubMed ID: 27155617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principle of minimal work fluctuations.
    Xiao G; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022130. PubMed ID: 26382367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.
    Benabbas A; Salna B; Sage JT; Champion PM
    J Chem Phys; 2015 Mar; 142(11):114101. PubMed ID: 25796225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology hidden behind the breakdown of adiabaticity.
    Fu LB; Chen SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016607. PubMed ID: 15697747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic dynamical fluctuation assisted symmetry breaking in adiabatic following.
    Zhang Q; Gong J; Oh CH
    Phys Rev Lett; 2013 Mar; 110(13):130402. PubMed ID: 23581298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.