These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 995958)
41. Plant protein biosynthesis: methionyl-tRNA synthetases, a new example of the cooperative activity of nucleo-cytoplasmic and organellar systems. Julien R; Mouricout M; Quintard B; Carias JR Reprod Nutr Dev (1980); 1981; 21(2):193-7. PubMed ID: 7349527 [No Abstract] [Full Text] [Related]
42. Affinity chromatography of aminoacyl-tRNA syntheses on agarose-hexyl-adenosine-5'-phosphate. Fromant M; Fayat G; Laufer P; Blanquet S Biochimie; 1981 Jun; 63(6):541-53. PubMed ID: 7020774 [No Abstract] [Full Text] [Related]
43. Affinity chromatography on agarose-hexyl-adenosine-5'-phosphate of methionyl-tRNA synthetase from Escherichia coli. Application of the couplings between the methionine and ATP sites. Fayat G; Fromant M; Kahn D; Blanquet S Eur J Biochem; 1977 Sep; 78(2):333-6. PubMed ID: 334536 [TBL] [Abstract][Full Text] [Related]
44. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues. Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903 [TBL] [Abstract][Full Text] [Related]
45. Covalent methionylation of Escherichia coli methionyl-tRNA synthethase: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry. Gillet S; Hountondji C; Schmitter JM; Blanquet S Protein Sci; 1997 Nov; 6(11):2426-35. PubMed ID: 9385645 [TBL] [Abstract][Full Text] [Related]
46. Methionine metabolism in BHK cells: the regulation of methionine adenosyltransferase. Caboche M J Cell Physiol; 1977 Sep; 92(3):407-24. PubMed ID: 903381 [No Abstract] [Full Text] [Related]
47. Distinct nuclear genes for yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases. Schneller JM; Schneider C; Stahl AJ Biochem Biophys Res Commun; 1978 Dec; 85(4):1392-9. PubMed ID: 84671 [No Abstract] [Full Text] [Related]
48. Multienzyme complexes of mammalian aminoacyl-tRNA synthetases. Yang DC; Garcia JV; Johnson YD; Wahab S Curr Top Cell Regul; 1985; 26():325-35. PubMed ID: 4075825 [No Abstract] [Full Text] [Related]
49. Activation of methionine by Escherichia coli methionyl-tRNA synthetase. Ghosh G; Pelka H; Schulman LH; Brunie S Biochemistry; 1991 Oct; 30(40):9569-75. PubMed ID: 1911742 [TBL] [Abstract][Full Text] [Related]
50. Probing the substrate-binding sites of aminoacyl-tRNA synthetases with the procion dye green HE-4BD. McArdell JE; Duffield M; Atkinson T Biochem J; 1989 Mar; 258(3):715-21. PubMed ID: 2658972 [TBL] [Abstract][Full Text] [Related]
51. Methionyl-tRNA synthetase from Escherichia coli. Inactivation and labeling by periodate-treated initiator tRNA. Fayat G; Hountondji C; Blanquet S Eur J Biochem; 1979 May; 96(1):87-92. PubMed ID: 222589 [TBL] [Abstract][Full Text] [Related]
52. Proteolytic cleavage of methionyl transfer ribonucleic acid synthetase from Bacillus stearothermophilus: effects on activity and structure. Kalogerakos T; Dessen P; Fayat G; Blanquet S Biochemistry; 1980 Aug; 19(16):3712-23. PubMed ID: 6250575 [TBL] [Abstract][Full Text] [Related]
54. Methionyl-tRNA synthetase from Escherichia coli: substituting magnesium by manganese in the L-methionine activating reaction. Hyafil F; Blanquet S Eur J Biochem; 1977 Apr; 74(3):481-93. PubMed ID: 323013 [TBL] [Abstract][Full Text] [Related]
55. Methionine analogues as inhibitors of methionyl-tRNA synthetase. Lee J; Kang MK; Chun MW; Jo YJ; Kwak JH; Kim S Bioorg Med Chem Lett; 1998 Dec; 8(24):3511-4. PubMed ID: 9934462 [TBL] [Abstract][Full Text] [Related]
56. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Jakubowski H; Fersht AR Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910 [TBL] [Abstract][Full Text] [Related]
57. Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Forrest AK; Jarvest RL; Mensah LM; O'Hanlon PJ; Pope AJ; Sheppard RJ Bioorg Med Chem Lett; 2000 Aug; 10(16):1871-4. PubMed ID: 10969988 [TBL] [Abstract][Full Text] [Related]
58. Reversible inhibition by methioninyl adenylate of protein synthesis and growth in chick enbyo fibroblasts. Robert-Gero M; Lawrence F; Vigier P Biochem Biophys Res Commun; 1975 Apr; 63(3):594-600. PubMed ID: 1169061 [No Abstract] [Full Text] [Related]
59. Reactions of the aminoacyl-tRNA synthetase-aminoacyl adenylate complex and amino acid derivatives. A new approach to peptide synthesis. Nakajima H; Kitabatake S; Tsurutani R; Tomioka I; Yamamoto K; Imahori K Biochim Biophys Acta; 1984 Oct; 790(2):197-9. PubMed ID: 6487635 [TBL] [Abstract][Full Text] [Related]
60. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver. Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]