These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9960090)

  • 1. Ziff-Gulari-Barshad model with CO desorption: An Ising-like nonequilibrium critical point.
    Tomé T; Dickman R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1993 Feb; 47(2):948-952. PubMed ID: 9960090
    [No Abstract]   [Full Text] [Related]  

  • 2. Monte Carlo simulations of the critical properties of a Ziff-Gulari-Barshad model of catalytic CO oxidation with long-range reactivity.
    Chan CH; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012103. PubMed ID: 25679566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of CO desorption and coadsorption with O on the phase diagram of a Ziff-Gulari-Barshad model for the catalytic oxidation of CO.
    Buendía GM; Machado E; Rikvold PA
    J Chem Phys; 2009 Nov; 131(18):184704. PubMed ID: 19916620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal oscillations and clustering in the Ziff-Gulari-Barshad model with surface reconstruction.
    Provata A; Noussiou VK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066108. PubMed ID: 16486011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic behavior of the Ziff-Gulari-Barshad model on fractal lattices: the influence of the order of ramification.
    Gao Z; Yang ZR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2741-4. PubMed ID: 11970078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-order moments at the critical point of the Ziff-Gulari-Barshad model.
    Leite VS; Hoenicke GL; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036104. PubMed ID: 11580391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical properties of the Ziff, Gulari, and Barshad (ZGB) model with inert sites.
    Hoenicke GL; de Andrade MF; Figueiredo W
    J Chem Phys; 2014 Aug; 141(7):074709. PubMed ID: 25149808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the subsurface oxygen diffusion on the Ziff-Gulari-Barshad catalytic reaction model.
    Grandi BC; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036135. PubMed ID: 11909193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of a catalytic reaction to periodic variation of the CO pressure: increased CO2 production and dynamic phase transition.
    Machado E; Buendía GM; Rikvold PA; Ziff RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016120. PubMed ID: 15697671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ziff-gulari-barshad model with random distribution of inert sites.
    Hoenicke GL; Figueiredo W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6216-23. PubMed ID: 11101952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage spreading in the Ziff-Gulari-Barshad model.
    Albano EV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1994 Aug; 50(2):1129-1134. PubMed ID: 9962071
    [No Abstract]   [Full Text] [Related]  

  • 12. Phase diagrams of the Ziff-Gulari-Barshad model on random networks.
    Vilela EB; Fernandes HA; Paranhos Costa FL; Gomes PF
    J Comput Chem; 2020 Aug; 41(22):1965-1972. PubMed ID: 32597515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of nucleation at a nonequilibrium first-order phase transition using a rare-event algorithm.
    Adams DA; Ziff RM; Sander LM
    J Chem Phys; 2010 Nov; 133(17):174107. PubMed ID: 21054006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative method to characterize continuous and discontinuous phase transitions in surface reaction models.
    Fernandes HA; da Silva R; Santos ED; Gomes PF; Arashiro E
    Phys Rev E; 2016 Aug; 94(2-1):022129. PubMed ID: 27627268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium kinetic phase transition of a monomer-dimer reaction model with sequential dimer adsorption in two dimensions.
    Hua DY; Ma YQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036101. PubMed ID: 12366178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decay of metastable phases in a model for the catalytic oxidation of CO.
    Machado E; Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031603. PubMed ID: 15903439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012132. PubMed ID: 23944439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices.
    de Oliveira MM; Alves SG; Ferreira SC
    Phys Rev E; 2016 Jan; 93(1):012110. PubMed ID: 26871027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic phase transitions in a contaminated monomer-dimer reaction model.
    Bustos V; Unac RO; Zgrablich G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8768-76. PubMed ID: 11138180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-approximation mean-field theory of a class of cellular automaton models.
    Zhang Bt BT; Liu Ch CH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):4939-44. PubMed ID: 11969446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.