These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9962550)

  • 1. Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects.
    Peterlongo A; Miotello A; Kelly R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1994 Dec; 50(6):4716-4727. PubMed ID: 9962550
    [No Abstract]   [Full Text] [Related]  

  • 2. Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses.
    Kelly R; Miotello A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2616-25. PubMed ID: 11970063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring.
    Ferrari A; Hunt J; Stiegman A; Dudley GB
    Molecules; 2015 Dec; 20(12):21672-80. PubMed ID: 26690096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth of vaporization and the effect of pulse stacking with a high-energy, pulsed carbon dioxide laser.
    Fitzpatrick RE; Smith SR; Sriprachya-anunt S
    J Am Acad Dermatol; 1999 Apr; 40(4):615-22. PubMed ID: 10188684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of two-phase droplets to intense electromagnetic radiation.
    Spann JF; Maloney DJ; Lawson WF; Casleton KH
    Appl Opt; 1993 Apr; 32(12):2152-8. PubMed ID: 20820360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polytetrafluoroethylene for the Prevention of Bumping From Superheating of Boiling Fluids.
    Bennett HS
    Science; 1947 Dec; 106(2765):646. PubMed ID: 17741560
    [No Abstract]   [Full Text] [Related]  

  • 7. Trace level determination of lead in solid samples by UV laser ablation and laser-enhanced ionization detection.
    Gravel JF; Nobert P; Gravel JF; Boudreau D
    Anal Chem; 2003 Mar; 75(6):1442-9. PubMed ID: 12659208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Superheating for Peptide Sequence Elucidation.
    Altmeyer MO; Manz A; Neužil P
    Anal Chem; 2015 Jun; 87(12):5997-6003. PubMed ID: 26035024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.
    Shen B; Yamada M; Hidaka S; Liu J; Shiomi J; Amberg G; Do-Quang M; Kohno M; Takahashi K; Takata Y
    Sci Rep; 2017 May; 7(1):2036. PubMed ID: 28515431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heating and destruction of metallic particles exposed to intense laser radiation.
    Prishivalko AP; Astafieva LG; Leiko ST
    Appl Opt; 1996 Feb; 35(6):965-72. PubMed ID: 21069094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaporization Detection Imaging: A Technique for Imaging Low-Boiling-Point Phase-Change Contrast Agents with a High Depth of Penetration and Contrast-to-Tissue Ratio.
    Rojas JD; Dayton PA
    Ultrasound Med Biol; 2019 Jan; 45(1):192-207. PubMed ID: 30482709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering.
    Yoder GD; Diwakar PK; Hahn DW
    Appl Opt; 2005 Jul; 44(20):4211-9. PubMed ID: 16045207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication: High speed optical investigations of a character of boiling-up onset.
    Gurashkin AL; Starostin AA; Ermakov GV; Skripov PV
    J Chem Phys; 2012 Jan; 136(2):021102. PubMed ID: 22260557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium-titanyl-phosphate laser vaporization of the prostate: a comparative functional and pathologic study in canines.
    Kuntzman RS; Malek RS; Barrett DM; Bostwick DG
    Urology; 1996 Oct; 48(4):575-83. PubMed ID: 8886063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holmium:YAG transurethral incision versus laser photoselective vaporization for benign prostatic hyperplasia in a small prostate.
    Elshal AM; Elkoushy MA; Elmansy HM; Sampalis J; Elhilali MM
    J Urol; 2014 Jan; 191(1):148-54. PubMed ID: 23845460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.
    Baral S; Green AJ; Livshits MY; Govorov AO; Richardson HH
    ACS Nano; 2014 Feb; 8(2):1439-48. PubMed ID: 24476426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry.
    Flanigan P; Levis R
    Annu Rev Anal Chem (Palo Alto Calif); 2014; 7():229-56. PubMed ID: 25014343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser postionization of neutral molecules sputtered using bismuth and argon cluster primary ions.
    Heeger M; Tyler BJ; Körsgen M; Arlinghaus HF
    Biointerphases; 2018 Mar; 13(3):03B412. PubMed ID: 29499611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.
    Shi F; Flanigan PM; Archer JJ; Levis RJ
    Anal Chem; 2015 Mar; 87(6):3187-94. PubMed ID: 25688836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.