These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9962733)

  • 1. Continued fraction formalism of linear dynamic conductivity by a combined projection technique.
    Sug JY; Kang NL; Ryu JY; Choi SD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1995 Feb; 51(2):929-934. PubMed ID: 9962733
    [No Abstract]   [Full Text] [Related]  

  • 2. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.
    Petrowsky M; Fleshman A; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(31):9303-9. PubMed ID: 22845017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
    Bhattacharya S; Ghosh A
    J Chem Phys; 2005 Sep; 123(12):124514. PubMed ID: 16392504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.
    Te Vrugt M; Wittkowski R
    Phys Rev E; 2019 Jun; 99(6-1):062118. PubMed ID: 31330634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.
    Fleshman AM; Petrowsky M; Frech R
    J Phys Chem B; 2013 May; 117(17):5330-7. PubMed ID: 23527562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compatibility of the linear-quadratic formalism and biologically effective dose concept to high-dose-per-fraction irradiation in a murine tumor.
    Otsuka S; Shibamoto Y; Iwata H; Murata R; Sugie C; Ito M; Ogino H
    Int J Radiat Oncol Biol Phys; 2011 Dec; 81(5):1538-43. PubMed ID: 22115556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified projection operator formalism in nonequilibrium statistical mechanics.
    Uchiyama C; Shibata F
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2636-50. PubMed ID: 11970065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new formalism for modelling parameters α and β of the linear-quadratic model of cell survival for hadron therapy.
    Vassiliev ON; Grosshans DR; Mohan R
    Phys Med Biol; 2017 Oct; 62(20):8041-8059. PubMed ID: 28832343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of the linear-quadratic formalism for modeling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer.
    Guckenberger M; Klement RJ; Allgäuer M; Appold S; Dieckmann K; Ernst I; Ganswindt U; Holy R; Nestle U; Nevinny-Stickel M; Semrau S; Sterzing F; Wittig A; Andratschke N; Flentje M
    Radiother Oncol; 2013 Oct; 109(1):13-20. PubMed ID: 24183066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of molecular dynamics and moment based methods as tools in the computation of time dependent correlation functions.
    Paul R
    J Chem Phys; 2010 Jan; 132(3):034107. PubMed ID: 20095728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.
    Fisz JJ
    J Phys Chem A; 2006 Dec; 110(48):12977-85. PubMed ID: 17134156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier analysis of RGB fringe-projection profilometry and robust phase-demodulation methods against crosstalk distortion.
    Padilla M; Servin M; Garnica G
    Opt Express; 2016 Jul; 24(14):15417-28. PubMed ID: 27410817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.
    Zhang HD; Yan Y
    J Phys Chem A; 2016 May; 120(19):3241-5. PubMed ID: 26757138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent-potential approximation with the continued-fraction formalism.
    Cordelli A; Grosso G; Pastori Parravicini G
    Phys Rev B Condens Matter; 1991 Aug; 44(7):2946-2951. PubMed ID: 9999884
    [No Abstract]   [Full Text] [Related]  

  • 16. Continued-fraction formalism applied to the spin-1/2 XYZ model.
    Sardella E
    Phys Rev B Condens Matter; 1991 Jun; 43(16):13653-13655. PubMed ID: 9997209
    [No Abstract]   [Full Text] [Related]  

  • 17. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations.
    Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R
    Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference-point-independent dynamics of molecular liquids and glasses in the tensorial formalism.
    Schilling R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051206. PubMed ID: 12059544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems.
    Link V; Strunz WT
    Phys Rev Lett; 2017 Nov; 119(18):180401. PubMed ID: 29219600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic dynamics of thin hard rods.
    Otto M; Aspelmeier T; Zippelius A
    J Chem Phys; 2006 Apr; 124(15):154907. PubMed ID: 16674265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.