These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9963434)
1. Shock waves and time scales to reach equipartition in the Fermi-Pasta-Ulam model. Poggi P; Ruffo S; Kantz H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1995 Jul; 52(1):307-315. PubMed ID: 9963434 [No Abstract] [Full Text] [Related]
2. Time scale to ergodicity in the Fermi-Pasta-Ulam system. De Luca J; Lichtenberg AJ; Lieberman MA Chaos; 1995 Mar; 5(1):283-297. PubMed ID: 12780182 [TBL] [Abstract][Full Text] [Related]
3. Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. DeLuca J; Lichtenberg AJ; Ruffo S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1995 Apr; 51(4):2877-2885. PubMed ID: 9962963 [No Abstract] [Full Text] [Related]
4. Route to thermalization in the α-Fermi-Pasta-Ulam system. Onorato M; Vozella L; Proment D; Lvov YV Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4208-13. PubMed ID: 25805822 [TBL] [Abstract][Full Text] [Related]
5. Tail resonances of Fermi-Pasta-Ulam q-breathers and their impact on the pathway to equipartition. Penati T; Flach S Chaos; 2007 Jun; 17(2):023102. PubMed ID: 17614656 [TBL] [Abstract][Full Text] [Related]
6. Burgers Turbulence in the Fermi-Pasta-Ulam-Tsingou Chain. Gallone M; Marian M; Ponno A; Ruffo S Phys Rev Lett; 2022 Sep; 129(11):114101. PubMed ID: 36154422 [TBL] [Abstract][Full Text] [Related]
7. Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. Ponno A; Bambusi D Chaos; 2005 Mar; 15(1):15107. PubMed ID: 15836284 [TBL] [Abstract][Full Text] [Related]
8. Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model. Livi R; Pettini M; Ruffo S; Sparpaglione M; Vulpiani A Phys Rev A Gen Phys; 1985 Feb; 31(2):1039-1045. PubMed ID: 9895584 [No Abstract] [Full Text] [Related]
9. The development of truncated inviscid turbulence and the Fermi-Pasta-Ulam problem. Ooms G; Boersma BJ Chaos; 2008 Dec; 18(4):043124. PubMed ID: 19123634 [TBL] [Abstract][Full Text] [Related]
10. Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices. Ming Y; Ye L; Chen HS; Mao SF; Li HM; Ding ZJ Phys Rev E; 2018 Jan; 97(1-1):012221. PubMed ID: 29448422 [TBL] [Abstract][Full Text] [Related]
11. Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Christodoulidi H; Efthymiopoulos C; Bountis T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016210. PubMed ID: 20365449 [TBL] [Abstract][Full Text] [Related]
12. Transitions and time scales to equipartition in oscillator chains: low-frequency initial conditions. De Luca J; Lichtenberg A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026206. PubMed ID: 12241266 [TBL] [Abstract][Full Text] [Related]
13. q-Breathers and the Fermi-Pasta-Ulam problem. Flach S; Ivanchenko MV; Kanakov OI Phys Rev Lett; 2005 Aug; 95(6):064102. PubMed ID: 16090957 [TBL] [Abstract][Full Text] [Related]
14. Double Scaling in the Relaxation Time in the β-Fermi-Pasta-Ulam-Tsingou Model. Lvov YV; Onorato M Phys Rev Lett; 2018 Apr; 120(14):144301. PubMed ID: 29694112 [TBL] [Abstract][Full Text] [Related]
15. Fermi-Pasta-Ulam phenomenon for generic initial data. Carati A; Galgani L; Giorgilli A; Paleari S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):022104. PubMed ID: 17930091 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of solitary wave scattering in the Fermi-Pasta-Ulam model. Zhao H; Wen Z; Zhang Y; Zheng D Phys Rev Lett; 2005 Jan; 94(2):025507. PubMed ID: 15698194 [TBL] [Abstract][Full Text] [Related]
17. Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain. Truskinovsky L; Vainchtein A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042903. PubMed ID: 25375563 [TBL] [Abstract][Full Text] [Related]
18. Chaos and Anderson localization in disordered classical chains: Hertzian versus Fermi-Pasta-Ulam-Tsingou models. Ngapasare A; Theocharis G; Richoux O; Skokos C; Achilleos V Phys Rev E; 2019 Mar; 99(3-1):032211. PubMed ID: 30999537 [TBL] [Abstract][Full Text] [Related]
19. Multistage slow relaxation in a Hamiltonian system: The Fermi-Pasta-Ulam model. Matsuyama HJ; Konishi T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022917. PubMed ID: 26382486 [TBL] [Abstract][Full Text] [Related]
20. Renormalized waves and discrete breathers in Beta-Fermi-Pasta-Ulam chains. Gershgorin B; Lvov YV; Cai D Phys Rev Lett; 2005 Dec; 95(26):264302. PubMed ID: 16486358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]