These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9964144)

  • 1. Viscoelasticity of randomly branched polymers in the critical percolation class.
    Lusignan CP; Mourey TH; Wilson JC; Colby RH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1995 Dec; 52(6):6271-6280. PubMed ID: 9964144
    [No Abstract]   [Full Text] [Related]  

  • 2. Viscoelasticity of randomly branched polymers in the vulcanization class.
    Lusignan CP; Mourey TH; Wilson JC; Colby RH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5657-69. PubMed ID: 11970459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flory theory of randomly branched polymers.
    Everaers R; Grosberg AY; Rubinstein M; Rosa A
    Soft Matter; 2017 Feb; 13(6):1223-1234. PubMed ID: 28098322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renormalized field theory of collapsing directed randomly branched polymers.
    Janssen HK; Wevelsiep F; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041809. PubMed ID: 19905335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large scale behavior of a two-dimensional model of anisotropic branched polymers.
    Knežević M; Knežević D
    J Chem Phys; 2013 Oct; 139(16):164904. PubMed ID: 24182076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are Branched Polymers in the Universality Class of Percolation?
    Bunde A; Havlin S; Porto M
    Phys Rev Lett; 1995 Apr; 74(14):2714-2716. PubMed ID: 10057999
    [No Abstract]   [Full Text] [Related]  

  • 7. Critical properties of a branched polymer growth model.
    Botelho SS; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011108. PubMed ID: 11304235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible ring polymers in an obstacle environment: Molecular theory of linear viscoelasticity.
    Iyer BV; Lele AK; Juvekar VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021805. PubMed ID: 17025464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical properties of viscoelasticity of gels and elastic percolation networks.
    Arbabi S; Sahimi M
    Phys Rev Lett; 1990 Aug; 65(6):725-728. PubMed ID: 10043003
    [No Abstract]   [Full Text] [Related]  

  • 10. Potts-model formulation of percolation and branched polymers on a fractal lattice.
    Borjan Z; Knezevic M; Milosevic S
    Phys Rev B Condens Matter; 1993 Jan; 47(1):144-149. PubMed ID: 10004427
    [No Abstract]   [Full Text] [Related]  

  • 11. Lattice magnetic analog of branched polymers, lattice animals, and percolation. II. Correlation functions and generalizations.
    González AE
    Phys Rev A Gen Phys; 1987 Apr; 35(8):3499-3511. PubMed ID: 9898567
    [No Abstract]   [Full Text] [Related]  

  • 12. Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers.
    Snijkers F; Pasquino R; Olmsted PD; Vlassopoulos D
    J Phys Condens Matter; 2015 Dec; 27(47):473002. PubMed ID: 26558404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched polymers characterized by comprehensive two-dimensional separations with fully orthogonal mechanisms: molecular-topology fractionation×size-exclusion chromatography.
    Edam R; Mes EP; Meunier DM; Van Damme FA; Schoenmakers PJ
    J Chromatogr A; 2014 Oct; 1366():54-64. PubMed ID: 25282310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power law polydispersity and fractal structure of hyperbranched polymers.
    Buzza DM
    Eur Phys J E Soft Matter; 2004 Jan; 13(1):79-86. PubMed ID: 15024618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic Correlations in Random Ionomers.
    Ma B; Nguyen TD; Pryamitsyn VA; Olvera de la Cruz M
    ACS Nano; 2018 Mar; 12(3):2311-2318. PubMed ID: 29493221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of gelling polymers in the Zimm model.
    Löwe H; Müller P; Zippelius A
    J Chem Phys; 2005 Jan; 122(1):14905. PubMed ID: 15638698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched-polymer separations using comprehensive two-dimensional molecular-topology fractionation x size-exclusion chromatography.
    Edam R; Meunier DM; Mes EP; Van Damme FA; Schoenmakers PJ
    J Chromatogr A; 2008 Aug; 1201(2):208-14. PubMed ID: 18550074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standard and inverse bond percolation of straight rigid rods on square lattices.
    Ramirez LS; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2018 Apr; 97(4-1):042113. PubMed ID: 29758718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Prüfer-Sequence Based Algorithm for Calculating the Size of Ideal Randomly Branched Polymers.
    Singaram SW; Gopal A; Ben-Shaul A
    J Phys Chem B; 2016 Jul; 120(26):6231-7. PubMed ID: 27104292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collapse transition of randomly branched polymers: renormalized field theory.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051126. PubMed ID: 21728509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.