These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Random phase approximation for light nuclei based on fully relativistic Hartree-Fock calculations. Blunden PG; McCorquodale P Phys Rev C Nucl Phys; 1988 Oct; 38(4):1861-1869. PubMed ID: 9954997 [No Abstract] [Full Text] [Related]
3. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds. Aucar IA; Gómez SS; Melo JI; Giribet CC; Ruiz de Azúa MC J Chem Phys; 2013 Apr; 138(13):134107. PubMed ID: 23574208 [TBL] [Abstract][Full Text] [Related]
4. Relativistic Hartree-Fock approximation in a nonlinear model for nuclear matter and finite nuclei. Bernardos P; Fomenko VN; Giai NV; Quelle ML; Marcos S; Niembro R; Savushkin LN Phys Rev C Nucl Phys; 1993 Dec; 48(6):2665-2672. PubMed ID: 9969142 [No Abstract] [Full Text] [Related]
5. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. Aucar IA; Gómez SS; Ruiz de Azúa MC; Giribet CG J Chem Phys; 2012 May; 136(20):204119. PubMed ID: 22667552 [TBL] [Abstract][Full Text] [Related]
6. Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed. Stanke M; Adamowicz L J Phys Chem A; 2013 Oct; 117(39):10129-37. PubMed ID: 23679131 [TBL] [Abstract][Full Text] [Related]
7. Toward a consistent random phase approximation based on the relativistic Hartree approximation. Price CE; Rost E; Shepard JR; McNeil JA Phys Rev C Nucl Phys; 1992 Mar; 45(3):1089-1097. PubMed ID: 9967861 [No Abstract] [Full Text] [Related]
8. Relativistic random-phase-approximation response function for quasielastic electron scattering in local density approximation. Wehrberger K; Beck F Phys Rev C Nucl Phys; 1987 Jan; 35(1):298-304. PubMed ID: 9953760 [No Abstract] [Full Text] [Related]
9. Nonspectral Dirac random-phase approximation for finite nuclei. Shepard JR; Rost E; McNeil JA Phys Rev C Nucl Phys; 1989 Nov; 40(5):2320-2336. PubMed ID: 9966231 [No Abstract] [Full Text] [Related]
10. Erratum: Relativistic random-phase-approximation response function for quasielastic electron scattering in local density approximation. Wehrberger K; Beck F Phys Rev C Nucl Phys; 1987 Jun; 35(6):2337. PubMed ID: 9954037 [No Abstract] [Full Text] [Related]
11. A systematic sequence of relativistic approximations. Dyall KG J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355 [TBL] [Abstract][Full Text] [Related]
12. Correlation Energies from the Two-Component Random Phase Approximation. Kühn M J Chem Theory Comput; 2014 Feb; 10(2):623-33. PubMed ID: 26580039 [TBL] [Abstract][Full Text] [Related]
13. From nuclear matter to finite nuclei. II. Relativistic theories for finite nuclei. Boersma HF; Malfliet R Phys Rev C Nucl Phys; 1994 Mar; 49(3):1495-1515. PubMed ID: 9969372 [No Abstract] [Full Text] [Related]
14. Erratum: From nuclear matter to finite nuclei. II. Relativistic theories for finite nuclei. Boersma HF; Malfliet R Phys Rev C Nucl Phys; 1994 Aug; 50(2):1253. PubMed ID: 9969776 [No Abstract] [Full Text] [Related]
15. Finite-Temperature Relativistic Nuclear Field Theory: An Application to the Dipole Response. Litvinova E; Wibowo H Phys Rev Lett; 2018 Aug; 121(8):082501. PubMed ID: 30192567 [TBL] [Abstract][Full Text] [Related]
16. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds. Moncho S; Autschbach J J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333 [TBL] [Abstract][Full Text] [Related]
17. Proton electric pygmy dipole resonance. Paar N; Vretenar D; Ring P Phys Rev Lett; 2005 May; 94(18):182501. PubMed ID: 15904364 [TBL] [Abstract][Full Text] [Related]
18. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties. Roura PG; Melo JI; Ruiz de Azúa MC; Giribet CG J Chem Phys; 2006 Aug; 125(6):64107. PubMed ID: 16942273 [TBL] [Abstract][Full Text] [Related]
19. Spectral function for finite nuclei in the local-density approximation. Van Neck D ; Dieperink AE; Moya de Guerra E Phys Rev C Nucl Phys; 1995 Apr; 51(4):1800-1808. PubMed ID: 9970250 [No Abstract] [Full Text] [Related]