These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9966996)

  • 1. Nuclear ground-state correlations in the relativistic random-phase approximation.
    McNeil JA; Price CE; Shepard JR
    Phys Rev C Nucl Phys; 1990 Dec; 42(6):2442-2448. PubMed ID: 9966996
    [No Abstract]   [Full Text] [Related]  

  • 2. Expectation values of single-particle operators in the random phase approximation ground state.
    Kosov DS
    J Chem Phys; 2017 Feb; 146(5):054103. PubMed ID: 28178844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds.
    Aucar IA; Gómez SS; Melo JI; Giribet CC; Ruiz de Azúa MC
    J Chem Phys; 2013 Apr; 138(13):134107. PubMed ID: 23574208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear compressibility and the isoscalar monopole resonance in a relativistic continuum random phase approximation.
    Oakley DS; Shepard JR; Auerbach N
    Phys Rev C Nucl Phys; 1992 May; 45(5):2254-2259. PubMed ID: 9967986
    [No Abstract]   [Full Text] [Related]  

  • 5. Correlation Energies from the Two-Component Random Phase Approximation.
    Kühn M
    J Chem Theory Comput; 2014 Feb; 10(2):623-33. PubMed ID: 26580039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.
    Ziegler T; Krykunov M; Autschbach J
    J Chem Theory Comput; 2014 Sep; 10(9):3980-6. PubMed ID: 26588541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a consistent random phase approximation based on the relativistic Hartree approximation.
    Price CE; Rost E; Shepard JR; McNeil JA
    Phys Rev C Nucl Phys; 1992 Mar; 45(3):1089-1097. PubMed ID: 9967861
    [No Abstract]   [Full Text] [Related]  

  • 8. Relativistic random-phase-approximation response function for quasielastic electron scattering in local density approximation.
    Wehrberger K; Beck F
    Phys Rev C Nucl Phys; 1987 Jan; 35(1):298-304. PubMed ID: 9953760
    [No Abstract]   [Full Text] [Related]  

  • 9. Electronic structure of CeF from frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Tatewaki H; Yamamoto S; Watanabe Y; Nakano H
    J Chem Phys; 2008 Jun; 128(21):214901. PubMed ID: 18537445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms.
    Jiang H; Engel E
    J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quadrupole moment of the 3/2+ nuclear ground state of 197Au from electric field gradient relativistic coupled cluster and density-functional theory of small molecules and the solid state.
    Schwerdtfeger P; Bast R; Gerry MC; Jacob CR; Jansen M; Kellö V; Mudring AV; Sadlej AJ; Saue T; Söhnel T; Wagner FE
    J Chem Phys; 2005 Mar; 122(12):124317. PubMed ID: 15836388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Relativistic random-phase-approximation response function for quasielastic electron scattering in local density approximation.
    Wehrberger K; Beck F
    Phys Rev C Nucl Phys; 1987 Jun; 35(6):2337. PubMed ID: 9954037
    [No Abstract]   [Full Text] [Related]  

  • 13. A systematic sequence of relativistic approximations.
    Dyall KG
    J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic corrections to the ground states of HD and D
    Wang L; Yan ZC
    Phys Chem Chem Phys; 2018 Oct; 20(37):23948-23953. PubMed ID: 30209496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic effects on nuclear magnetic shielding constants in HX and CH3X (X=Br,I) based on the linear response within the elimination of small component approach.
    Melo JI; Ruiz de Azua MC; Giribet CG; Aucar GA; Provasi PF
    J Chem Phys; 2004 Oct; 121(14):6798-808. PubMed ID: 15473737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties.
    Roura PG; Melo JI; Ruiz de Azúa MC; Giribet CG
    J Chem Phys; 2006 Aug; 125(6):64107. PubMed ID: 16942273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach.
    Scuseria GE; Henderson TM; Sorensen DC
    J Chem Phys; 2008 Dec; 129(23):231101. PubMed ID: 19102519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent Gutzwiller approximation for the Hubbard model.
    Seibold G; Lorenzana J
    Phys Rev Lett; 2001 Mar; 86(12):2605-8. PubMed ID: 11289991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations.
    Krogh JW; Barone G; Lindh R
    Chemistry; 2006 Jun; 12(19):5116-21. PubMed ID: 16671047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic effects in the one-bond spin-spin coupling constants involving selenium.
    Rusakova IL; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Sep; 52(9):500-10. PubMed ID: 25043341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.