These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9966996)

  • 21. Ground state hyperfine splitting in 6,7Li atoms and the nuclear structure.
    Puchalski M; Pachucki K
    Phys Rev Lett; 2013 Dec; 111(24):243001. PubMed ID: 24483650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relativistic random-phase approximation longitudinal response function for quasielastic electron scattering.
    Wehrberger K; Beck F
    Phys Rev C Nucl Phys; 1988 Mar; 37(3):1148-1154. PubMed ID: 9954553
    [No Abstract]   [Full Text] [Related]  

  • 23. Relativistic spectral random-phase approximation in finite nuclei.
    Dawson JF; Furnstahl RJ
    Phys Rev C Nucl Phys; 1990 Nov; 42(5):2009-2022. PubMed ID: 9966950
    [No Abstract]   [Full Text] [Related]  

  • 24. Application of the relativistic random-phase approximation to Xe 5s photoionization.
    Deshmukh PC; Manson ST
    Phys Rev A Gen Phys; 1985 Nov; 32(5):3109. PubMed ID: 9896459
    [No Abstract]   [Full Text] [Related]  

  • 25. Extensive relativistic-random-phase-approximation study of photoionization from atomic ytterbium.
    Deshmukh PC; Manson ST
    Phys Rev A Gen Phys; 1986 Dec; 34(6):4757-4761. PubMed ID: 9897860
    [No Abstract]   [Full Text] [Related]  

  • 26. Photoionization of Al+ ions: A relativistic random-phase-approximation study.
    Deshmukh PC; Nasreen G; Manson ST
    Phys Rev A Gen Phys; 1988 Jul; 38(1):504-505. PubMed ID: 9900193
    [No Abstract]   [Full Text] [Related]  

  • 27. Low-energy photoionization of alkali-metal atoms: Relativistic random-phase-approximation calculations.
    Fink MG; Johnson WR
    Phys Rev A Gen Phys; 1986 Nov; 34(5):3754-3759. PubMed ID: 9897719
    [No Abstract]   [Full Text] [Related]  

  • 28. Random phase approximation for light nuclei based on fully relativistic Hartree-Fock calculations.
    Blunden PG; McCorquodale P
    Phys Rev C Nucl Phys; 1988 Oct; 38(4):1861-1869. PubMed ID: 9954997
    [No Abstract]   [Full Text] [Related]  

  • 29. A ground state potential energy surface for H2 using Monte Carlo methods.
    Alexander SA; Coldwell RL
    J Chem Phys; 2004 Dec; 121(23):11557-61. PubMed ID: 15634120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relativistic quantum Monte Carlo method using zeroth-order regular approximation Hamiltonian.
    Nakatsuka Y; Nakajima T; Nakata M; Hirao K
    J Chem Phys; 2010 Feb; 132(5):054102. PubMed ID: 20136300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relativistic correlating basis sets for actinide atoms from 90Th to 103Lr.
    Noro T; Sekiya M; Osanai Y; Koga T; Matsuyama H
    J Comput Chem; 2007 Dec; 28(16):2511-6. PubMed ID: 17508413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relativistic Two-Component Particle-Particle Tamm-Dancoff Approximation.
    Williams-Young D; Egidi F; Li X
    J Chem Theory Comput; 2016 Nov; 12(11):5379-5384. PubMed ID: 27668516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relativistic effects on the nuclear magnetic shieldings of rare-gas atoms and halogen in hydrogen halides within relativistic polarization propagator theory.
    Gomez SS; Maldonado A; Aucar GA
    J Chem Phys; 2005 Dec; 123(21):214108. PubMed ID: 16356040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Communication: two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation.
    Krause K; Klopper W
    J Chem Phys; 2013 Nov; 139(19):191102. PubMed ID: 24320308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonance transitions of Zn-like ions from the multiconfiguration relativistic random-phase approximation.
    Cheng TC; Huang KN
    Phys Rev A; 1992 Apr; 45(7):4367-4373. PubMed ID: 9907511
    [No Abstract]   [Full Text] [Related]  

  • 37. Autoionizing levels of beryllium from the multiconfiguration relativistic random-phase approximation.
    Chi HC; Huang KN; Cheng KT
    Phys Rev A; 1991 Mar; 43(5):2542-2545. PubMed ID: 9905306
    [No Abstract]   [Full Text] [Related]  

  • 38. Photoionization of beryllium in the multiconfiguration relativistic random-phase approximation.
    Hsin-Chang Chi; Keh-Ning Huang
    Phys Rev A; 1991 May; 43(9):4742-4745. PubMed ID: 9905592
    [No Abstract]   [Full Text] [Related]  

  • 39. Autoionizing levels of zinc from the multiconfiguration relativistic random-phase approximation.
    Hwang CY; Chi HC; Huang KN
    Phys Rev A; 1991 Dec; 44(11):7189-7194. PubMed ID: 9905859
    [No Abstract]   [Full Text] [Related]  

  • 40. Magnetic dipole transitions of Pb-like ions from the multiconfiguration relativistic random-phase approximation.
    Chou HS; Huang KN; Johnson WR
    Phys Rev A; 1991 Sep; 44(5):R2769-R2770. PubMed ID: 9906355
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.