These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9966996)

  • 41. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.
    Moncho S; Autschbach J
    J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First-order excited state properties in the four-component Hartree-Fock approximation: the excited state electric dipole moments in CsAg and CsAu.
    Tellgren E; Henriksson J; Norman P
    J Chem Phys; 2007 Feb; 126(6):064313. PubMed ID: 17313221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calculation of indirect nuclear spin-spin coupling constants within the regular approximation for relativistic effects.
    Filatov M; Cremer D
    J Chem Phys; 2004 Jun; 120(24):11407-22. PubMed ID: 15268175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes.
    Ekdahl C
    Rev Sci Instrum; 2016 Jun; 87(6):063303. PubMed ID: 27370443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spin-isospin resonances and the neutron skin of nuclei.
    Vretenar D; Paar N; Niksić T; Ring P
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):262502. PubMed ID: 14754046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.
    Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K
    J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unraveling the hydration-induced ground-state change of AtO
    Sergentu DC; Réal F; Montavon G; Galland N; Maurice R
    Phys Chem Chem Phys; 2016 Dec; 18(48):32703-32712. PubMed ID: 27840883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relativistic state-specific multireference perturbation theory incorporating improved virtual orbitals: Application to the ground state single-bond dissociation.
    Ghosh A; Chaudhuri RK; Chattopadhyay S; Mahapatra US
    J Comput Chem; 2015 Oct; 36(26):1954-72. PubMed ID: 26272333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Explicitly correlated potential energy surface of H3+, including relativistic and adiabatic corrections.
    Kutzelnigg W; Jaquet R
    Philos Trans A Math Phys Eng Sci; 2006 Nov; 364(1848):2855-74; discussion 2874-6. PubMed ID: 17015373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How large are nonadiabatic effects in atomic and diatomic systems?
    Yang Y; Kylänpää I; Tubman NM; Krogel JT; Hammes-Schiffer S; Ceperley DM
    J Chem Phys; 2015 Sep; 143(12):124308. PubMed ID: 26429012
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation.
    Green TF; Yates JR
    J Chem Phys; 2014 Jun; 140(23):234106. PubMed ID: 24952522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ground-state correlation effects in extended random phase approximation calculations.
    Mariano A; Krmpotic F; de Toledo Piza AF
    Phys Rev C Nucl Phys; 1994 May; 49(5):2824-2827. PubMed ID: 9969539
    [No Abstract]   [Full Text] [Related]  

  • 53. Superscaling in charged current neutrino quasielastic scattering in the relativistic impulse approximation.
    Caballero JA; Amaro JE; Barbaro MB; Donnelly TW; Maieron C; Udias JM
    Phys Rev Lett; 2005 Dec; 95(25):252502. PubMed ID: 16384453
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical study of the relativistic molecular rotational g-tensor.
    Aucar IA; Gomez SS; Giribet CG; Ruiz de Azúa MC
    J Chem Phys; 2014 Nov; 141(19):194103. PubMed ID: 25416870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator.
    Maeda H; Ootani Y; Fukui H
    J Chem Phys; 2007 May; 126(17):174102. PubMed ID: 17492852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.
    Stanke M; Kedziera D; Bubin S; Adamowicz L
    J Chem Phys; 2007 Oct; 127(13):134107. PubMed ID: 17919011
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quasiparticle random phase approximation analysis of the double beta decay of 100Mo to the ground state and excited states of 100Ru.
    Suhonen J; Civitarese O
    Phys Rev C Nucl Phys; 1994 Jun; 49(6):3055-3060. PubMed ID: 9969584
    [No Abstract]   [Full Text] [Related]  

  • 59. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory.
    Romaniello P; de Boeij PL
    J Chem Phys; 2005 Apr; 122(16):164303. PubMed ID: 15945680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Violation of sum rules by random-phase-approximation surface response calculations based on a density-functional ground-state description.
    Liebsch A
    Phys Rev B Condens Matter; 1985 Nov; 32(10):6255-6260. PubMed ID: 9936727
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.