These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9967986)

  • 21. Isoscalar monopole and quadrupole strength of 16O in an alpha +12C cluster and symplectic mixed basis.
    Suzuki Y; Hara S
    Phys Rev C Nucl Phys; 1989 Feb; 39(2):658-665. PubMed ID: 9955240
    [No Abstract]   [Full Text] [Related]  

  • 22. Isoscalar monopole and dipole strength between 10 and 20 MeV in 24Mg from inelastic alpha scattering at and around 0 degrees.
    Lu HJ; Brandenburg S; De Leo R ; Harakeh MN; Poelhekken TD; van der Woude A
    Phys Rev C Nucl Phys; 1986 Mar; 33(3):1116-1119. PubMed ID: 9953256
    [No Abstract]   [Full Text] [Related]  

  • 23. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds.
    Aucar IA; Gómez SS; Melo JI; Giribet CC; Ruiz de Azúa MC
    J Chem Phys; 2013 Apr; 138(13):134107. PubMed ID: 23574208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear ground-state correlations in the relativistic random-phase approximation.
    McNeil JA; Price CE; Shepard JR
    Phys Rev C Nucl Phys; 1990 Dec; 42(6):2442-2448. PubMed ID: 9966996
    [No Abstract]   [Full Text] [Related]  

  • 25. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.
    Moncho S; Autschbach J
    J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isospin character of the pygmy dipole resonance in 124Sn.
    Endres J; Litvinova E; Savran D; Butler PA; Harakeh MN; Harissopulos S; Herzberg RD; Krücken R; Lagoyannis A; Pietralla N; Ponomarev VY; Popescu L; Ring P; Scheck M; Sonnabend K; Stoica VI; Wörtche HJ; Zilges A
    Phys Rev Lett; 2010 Nov; 105(21):212503. PubMed ID: 21231295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relativistic Coulomb excitation within the time dependent superfluid local density approximation.
    Stetcu I; Bertulani CA; Bulgac A; Magierski P; Roche KJ
    Phys Rev Lett; 2015 Jan; 114(1):012701. PubMed ID: 25615463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resonance transitions of Zn-like ions from the multiconfiguration relativistic random-phase approximation.
    Cheng TC; Huang KN
    Phys Rev A; 1992 Apr; 45(7):4367-4373. PubMed ID: 9907511
    [No Abstract]   [Full Text] [Related]  

  • 29. Coherent contributions to isospin mixing in the mirror pair 67As and 67Se.
    Orlandi R; de Angelis G; Bizzeti PG; Lunardi S; Gadea A; Bizzeti-Sona AM; Bracco A; Brandolini F; Carpenter MP; Chiara CJ; Della Vedova F; Farnea E; Greene JP; Lenzi SM; Leoni S; Lister CJ; Mărginean N; Mengoni D; Napoli DR; Singh BS; Pechenaya OL; Recchia F; Reviol W; Sahin E; Sarantites DG; Seweryniak D; Tonev D; Ur CA; Valiente-Dobón JJ; Wadsworth R; Wiedemann KT; Zhu S
    Phys Rev Lett; 2009 Jul; 103(5):052501. PubMed ID: 19792492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of interaction range and compressibility on the microphase separation of diblock copolymers: Mean-field analysis.
    Wang Q
    J Chem Phys; 2008 Aug; 129(5):054904. PubMed ID: 18698922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a consistent random phase approximation based on the relativistic Hartree approximation.
    Price CE; Rost E; Shepard JR; McNeil JA
    Phys Rev C Nucl Phys; 1992 Mar; 45(3):1089-1097. PubMed ID: 9967861
    [No Abstract]   [Full Text] [Related]  

  • 32. Isoscalar giant resonances in a relativistic model.
    L'Huillier M; Van Giai N
    Phys Rev C Nucl Phys; 1989 May; 39(5):2022-2029. PubMed ID: 9955429
    [No Abstract]   [Full Text] [Related]  

  • 33. Z-dependence of mean excitation energies for second and third row atoms and their ions.
    Sauer SPA; Sabin JR; Oddershede J
    J Chem Phys; 2018 May; 148(17):174307. PubMed ID: 29739214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relativistic random-phase-approximation response function for quasielastic electron scattering in local density approximation.
    Wehrberger K; Beck F
    Phys Rev C Nucl Phys; 1987 Jan; 35(1):298-304. PubMed ID: 9953760
    [No Abstract]   [Full Text] [Related]  

  • 35. Erratum: Relativistic random-phase-approximation response function for quasielastic electron scattering in local density approximation.
    Wehrberger K; Beck F
    Phys Rev C Nucl Phys; 1987 Jun; 35(6):2337. PubMed ID: 9954037
    [No Abstract]   [Full Text] [Related]  

  • 36. Comparison between relativistic and nonrelativistic models of the nucleon-nucleon effective interaction. I. Normal-parity isoscalar transitions.
    Kelly JJ; Wallace SJ
    Phys Rev C Nucl Phys; 1994 Mar; 49(3):1315-1336. PubMed ID: 9969355
    [No Abstract]   [Full Text] [Related]  

  • 37. A systematic sequence of relativistic approximations.
    Dyall KG
    J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Born approximation of acoustic radiation force and torque on soft objects of arbitrary shape.
    Jerome TS; Ilinskii YA; Zabolotskaya EA; Hamilton MF
    J Acoust Soc Am; 2019 Jan; 145(1):36. PubMed ID: 30710947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generator coordinate calculations for breathing-mode giant monopole resonance in the relativistic mean-field theory.
    Stoitsov MV; Ring P; Sharma MM
    Phys Rev C Nucl Phys; 1994 Sep; 50(3):1445-1455. PubMed ID: 9969806
    [No Abstract]   [Full Text] [Related]  

  • 40. Correlation Energies from the Two-Component Random Phase Approximation.
    Kühn M
    J Chem Theory Comput; 2014 Feb; 10(2):623-33. PubMed ID: 26580039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.