These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9968489)

  • 1. Computational comparison of quantum-mechanical models for multistep direct reactions.
    Koning AJ; Akkermans JM
    Phys Rev C Nucl Phys; 1993 Feb; 47(2):724-741. PubMed ID: 9968489
    [No Abstract]   [Full Text] [Related]  

  • 2. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent.
    Nakano H; Yamamoto T
    J Chem Phys; 2012 Apr; 136(13):134107. PubMed ID: 22482540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrous iron reduction of superoxide, a proton-coupled electron-transfer four-point test.
    Wander MC; Kubicki JD; Clark AE; Schoonen MA
    J Phys Chem A; 2009 Feb; 113(6):1020-5. PubMed ID: 19146444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid-dynamic model of laser-induced breakdown in air.
    Dors IG; Parigger CG
    Appl Opt; 2003 Oct; 42(30):5978-85. PubMed ID: 14594054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear quantum effects on an enzyme-catalyzed reaction with reaction path potential: proton transfer in triosephosphate isomerase.
    Wang M; Lu Z; Yang W
    J Chem Phys; 2006 Mar; 124(12):124516. PubMed ID: 16599706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics.
    John C; Spura T; Habershon S; Kühne TD
    Phys Rev E; 2016 Apr; 93():043305. PubMed ID: 27176426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed quantum mechanical/molecular mechanical simulations of chemical reactions in solution and in enzymes by the classical trajectory mapping approach.
    Pan JJ; Hwang JK
    Pac Symp Biocomput; 1996; ():539-49. PubMed ID: 9390257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of the intramolecular deprotonation of a carbon acid in aqueous solution.
    Sharma R; Thorley M; McNamara JP; Watt CI; Burton NA
    Phys Chem Chem Phys; 2008 May; 10(18):2475-87. PubMed ID: 18446247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions.
    Liu H; Lu Z; Cisneros GA; Yang W
    J Chem Phys; 2004 Jul; 121(2):697-706. PubMed ID: 15260596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.
    van der Kamp MW; Mulholland AJ
    Biochemistry; 2013 Apr; 52(16):2708-28. PubMed ID: 23557014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of 2'-deoxyadenosine with cis-2-butene-1,4-dial: computational approach to analysis of multistep chemical reactions.
    Sviatenko L; Gorb L; Hovorun D; Leszczynski J
    J Phys Chem A; 2012 Mar; 116(9):2333-42. PubMed ID: 22315946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiconfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations.
    Lin H; Zhao Y; Tishchenko O; Truhlar DG
    J Chem Theory Comput; 2006 Sep; 2(5):1237-54. PubMed ID: 26626833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum carbide nanocatalysts at work in the in situ environment: a density functional tight-binding and quantum mechanical/molecular mechanical study.
    Liu X; Salahub DR
    J Am Chem Soc; 2015 Apr; 137(12):4249-59. PubMed ID: 25774905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions.
    Bahmanyar S; Houk KN; Martin HJ; List B
    J Am Chem Soc; 2003 Mar; 125(9):2475-9. PubMed ID: 12603135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regression relation for pure quantum states and its implications for efficient computing.
    Elsayed TA; Fine BV
    Phys Rev Lett; 2013 Feb; 110(7):070404. PubMed ID: 25166355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient quantum mechanical method for radical pair recombination reactions.
    Lewis AM; Fay TP; Manolopoulos DE
    J Chem Phys; 2016 Dec; 145(24):244101. PubMed ID: 28010067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanical modeling of catalytic processes.
    Bell AT; Head-Gordon M
    Annu Rev Chem Biomol Eng; 2011; 2():453-77. PubMed ID: 22432627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical approaches: semiempirical molecular orbital and hybrid quantum mechanical/molecular mechanical techniques.
    Bryce RA; Hillier IH
    Curr Pharm Des; 2014; 20(20):3293-302. PubMed ID: 23947649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots.
    Kazemi M; Åqvist J
    Nat Commun; 2015 Jun; 6():7293. PubMed ID: 26028237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.