These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9970052)
1. Excitation-energy partition in quasielastic transfer reactions at near barrier energies. Wu CY; Cline D; Devlin M; Helmer KG; Ibbotson RW; Simon MW; Butler PA; Cresswell AJ; Jones GD; Jones PM; Smith JF; Cunningham RA; Simpson J Phys Rev C Nucl Phys; 1995 Jan; 51(1):173-177. PubMed ID: 9970052 [No Abstract] [Full Text] [Related]
2. Quasielastic barrier distributions: role of particle transfer channels. Pollarolo G Phys Rev Lett; 2008 Jun; 100(25):252701. PubMed ID: 18643657 [TBL] [Abstract][Full Text] [Related]
3. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near a conical intersection. Li SL; Truhlar DG J Chem Phys; 2014 Sep; 141(10):104106. PubMed ID: 25217903 [TBL] [Abstract][Full Text] [Related]
4. Barrier distributions derived from quasielastic backscattering of 48Ti, 54Cr, 56Fe, 64Ni, and 70Zn projectiles on a 208Pb target. Mitsuoka S; Ikezoe H; Nishio K; Tsuruta K; Jeong SC; Watanabe Y Phys Rev Lett; 2007 Nov; 99(18):182701. PubMed ID: 17995401 [TBL] [Abstract][Full Text] [Related]
5. H+ versus D+) transfer from HOD+ to N2: mode- and bond-selective effects. Bell DM; Boyle JM; Anderson SL J Chem Phys; 2011 Jul; 135(4):044305. PubMed ID: 21806117 [TBL] [Abstract][Full Text] [Related]
6. Cluster perturbation theory. II. Excitation energies for a coupled cluster target state. Pawłowski F; Olsen J; Jørgensen P J Chem Phys; 2019 Apr; 150(13):134109. PubMed ID: 30954037 [TBL] [Abstract][Full Text] [Related]
7. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Adolphs J; Renger T Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264 [TBL] [Abstract][Full Text] [Related]
8. Excitation energy division in the quasielastic region from reactions of 12 MeV/nucleon 48Ti with 150Nd. Semkow TM; Sarantites DG; Honkanen K; Li Z; Ross M; Beene JR; Halbert ML; Hensley DC Phys Rev C Nucl Phys; 1988 Jan; 37(1):169-177. PubMed ID: 9954426 [No Abstract] [Full Text] [Related]
9. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
10. H+ versus D+ transfer from HOD+ to CO2: bond-selective chemistry and the anomalous effect of bending excitation. Bell DM; Boyle JM; Anderson SL J Chem Phys; 2011 Feb; 134(6):064312. PubMed ID: 21322685 [TBL] [Abstract][Full Text] [Related]
11. The dissociative chemisorption of water on Ni(111): Mode- and bond-selective chemistry on metal surfaces. Farjamnia A; Jackson B J Chem Phys; 2015 Jun; 142(23):234705. PubMed ID: 26093571 [TBL] [Abstract][Full Text] [Related]
12. Partition of electronic excitation energies: the IQA/EOM-CCSD method. Fernández-Alarcón A; Casals-Sainz JL; Guevara-Vela JM; Costales A; Francisco E; Martín Pendás Á; Rocha-Rinza T Phys Chem Chem Phys; 2019 Jun; 21(25):13428-13439. PubMed ID: 30942218 [TBL] [Abstract][Full Text] [Related]
13. Fission-fragment angular distributions and excitation functions in fission following complete fusion and targetlike-fragment fission reactions of 19F+232Th at near- and sub-barrier energies. Majumdar N; Bhattacharya P; Biswas DC; Choudhury RK; Nadkarni DM; Saxena A Phys Rev C Nucl Phys; 1995 Jun; 51(6):3109-3115. PubMed ID: 9970412 [No Abstract] [Full Text] [Related]
14. Conformational isomerization of formic acid by vibrational excitation at energies below the torsional barrier. Pettersson M; Maçôas EM; Khriachtchev L; Fausto R; Räsänen M J Am Chem Soc; 2003 Apr; 125(14):4058-9. PubMed ID: 12670221 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence excitation and excited state intramolecular proton transfer of jet-cooled naphthol derivatives: Part 1. 1-Hydroxy-2-naphthaldehyde. McCarthy A; Ruth AA Phys Chem Chem Phys; 2011 Apr; 13(16):7485-99. PubMed ID: 21423923 [TBL] [Abstract][Full Text] [Related]