These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9970873)

  • 21. First experimental evidence for two-phonon octupole- gamma -vibrational excitations in deformed nuclei.
    Kneissl U; Zilges A; Margraf J; Bauske I; von Brentano P ; Friedrichs H; Heil RD; Herzberg R; Pitz HH; Schlitt B; Wesselborg C
    Phys Rev Lett; 1993 Oct; 71(14):2180-2183. PubMed ID: 10054608
    [No Abstract]   [Full Text] [Related]  

  • 22. Structure of spin excitations in heavily electron-doped Li
    Pan B; Shen Y; Hu D; Feng Y; Park JT; Christianson AD; Wang Q; Hao Y; Wo H; Yin Z; Maier TA; Zhao J
    Nat Commun; 2017 Jul; 8(1):123. PubMed ID: 28743902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spin M1 excitations in deformed nuclei from self-consistent Hartree-Fock plus random-phase approximation.
    Sarriguren P; Moya de Guerra E ; Nojarov R
    Phys Rev C Nucl Phys; 1996 Aug; 54(2):690-705. PubMed ID: 9971393
    [No Abstract]   [Full Text] [Related]  

  • 24. Comment on "New interpretation of the lowest K=0 collective excitations of deformed nuclei as a phonon excitation of the gamma band".
    Kumar K
    Phys Rev C Nucl Phys; 1995 Jun; 51(6):3524. PubMed ID: 9970466
    [No Abstract]   [Full Text] [Related]  

  • 25. Enhanced sensitivity of nuclear binding energies to collective structure.
    Cakirli RB; Casten RF; Winkler R; Blaum K; Kowalska M
    Phys Rev Lett; 2009 Feb; 102(8):082501. PubMed ID: 19257733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic dipole strength functions in heavy deformed nuclei.
    Zawischa D; Macfarlane M; Speth J
    Phys Rev C Nucl Phys; 1990 Oct; 42(4):1461-1471. PubMed ID: 9966881
    [No Abstract]   [Full Text] [Related]  

  • 27. Generalized oscillator strengths of the low-lying valence-shell excitations of N
    Liu YW; Peng YG; Xiong T; Wang SX; Huang XC; Wu Y; Zhu LF
    J Chem Phys; 2019 Mar; 150(9):094302. PubMed ID: 30849870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb₂Pt₂Pb.
    Wu LS; Gannon WJ; Zaliznyak IA; Tsvelik AM; Brockmann M; Caux JS; Kim MS; Qiu Y; Copley JR; Ehlers G; Podlesnyak A; Aronson MC
    Science; 2016 Jun; 352(6290):1206-10. PubMed ID: 27257254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7.
    Penc K; Romhányi J; Rõõm T; Nagel U; Antal A; Fehér T; Jánossy A; Engelkamp H; Murakawa H; Tokura Y; Szaller D; Bordács S; Kézsmárki I
    Phys Rev Lett; 2012 Jun; 108(25):257203. PubMed ID: 23004649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-way transparency of four-coloured spin-wave excitations in multiferroic materials.
    Kézsmárki I; Szaller D; Bordács S; Kocsis V; Tokunaga Y; Taguchi Y; Murakawa H; Tokura Y; Engelkamp H; Rõõm T; Nagel U
    Nat Commun; 2014; 5():3203. PubMed ID: 24487724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles.
    Ge L; Liu L; Dai S; Chai J; Song Q; Xiang H; Han D
    Opt Express; 2017 May; 25(10):10853-10862. PubMed ID: 28788773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiparticle interactions in backward proton production, subthreshold antiproton production, and inclusive electron scattering from nuclei.
    Danielewicz P
    Phys Rev C Nucl Phys; 1990 Oct; 42(4):1564-1576. PubMed ID: 9966891
    [No Abstract]   [Full Text] [Related]  

  • 33. Forward and backward unidirectional scattering from plasmonic coupled wires.
    Poutrina E; Rose A; Brown D; Urbas A; Smith DR
    Opt Express; 2013 Dec; 21(25):31138-54. PubMed ID: 24514688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy deformed nuclei in the shell model Monte Carlo method.
    Alhassid Y; Fang L; Nakada H
    Phys Rev Lett; 2008 Aug; 101(8):082501. PubMed ID: 18764607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles.
    Rolly B; Stout B; Bonod N
    Opt Express; 2012 Aug; 20(18):20376-86. PubMed ID: 23037088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ring-shaped backward stimulated Raman scattering driven by stimulated Brillouin scattering.
    Feng C; Diels JC; Xu X; Arissian L
    Opt Express; 2015 Jun; 23(13):17035-45. PubMed ID: 26191712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring the excitations in a new S  =  1/2 quantum spin chain material with competing interactions.
    Rule KC; Mole RA; Zanardo J; Krause-Heuer A; Darwish T; Lerch M; Yu D
    J Phys Condens Matter; 2018 May; 30(21):215602. PubMed ID: 29651987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of the high-energy spin excitations in a high-transition-temperature superconductor.
    Hayden SM; Mook HA; Dai P; Perring TG; Doğan F
    Nature; 2004 Jun; 429(6991):531-4. PubMed ID: 15175744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of symmetry in the theory of inelastic high-energy electron scattering and its application to atomic-resolution core-loss imaging.
    Dwyer C
    Ultramicroscopy; 2015 Apr; 151():68-77. PubMed ID: 25541390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter.
    Turner JE; Hamm RN
    Health Phys; 1995 Sep; 69(3):378-84. PubMed ID: 7635734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.