These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9971)

  • 41. Fluorescence titrations of residue 59 and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1.
    Fukunaga Y; Sakiyama F
    J Biochem; 1982 Jul; 92(1):155-61. PubMed ID: 6811572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subsites and catalytic mechanism of ribonuclease T: kinetic studies using GpC and GpU as substrates.
    Zabinski M; Walz FG
    Arch Biochem Biophys; 1976 Aug; 175(2):558-64. PubMed ID: 8711
    [No Abstract]   [Full Text] [Related]  

  • 43. Location of chromophoric residues in ribonuclease T1 by solvent perturbation difference spectroscopy.
    Campbell MK; Shipp S; Jantzen E
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1014-20. PubMed ID: 10911
    [No Abstract]   [Full Text] [Related]  

  • 44. Chemical modification of tyrosine residues in ribonuclease T1 with N-acetylimidazole and p-diazobenzenesulfonic acid.
    Kasai H; Takahashi K; Ando T
    J Biochem; 1977 Jun; 81(6):1751-8. PubMed ID: 408339
    [No Abstract]   [Full Text] [Related]  

  • 45. Modes of mononucleotide binding to ribonuclease T1.
    Georgalis Y; Zouni A; Zielenkiewicz P; Holzwarth JF; Clarke R; Hahn U; Saenger W
    J Biol Chem; 1992 May; 267(15):10323-30. PubMed ID: 1316897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding.
    Kostrewa D; Choe HW; Heinemann U; Saenger W
    Biochemistry; 1989 Sep; 28(19):7592-600. PubMed ID: 2514790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aminations of guanosine and deoxyguanosine with hydroxylamine-O-sulfonic acid and 2,4-dinitrophenoxyamine. Dependence on the reaction medium.
    Kohda K; Baba K; Kawazoe Y
    Nucleic Acids Symp Ser; 1986; (17):145-8. PubMed ID: 3562259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism and intermediate for formation of 2'-deoxyoxanosine.
    Suzuki T; Kanaori K; Tajima K; Makino K
    Nucleic Acids Symp Ser; 1997; (37):313-4. PubMed ID: 9586125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Base-group specificity at the primary recognition site of ribonuclease T for minimal RNA substrates.
    Walz FG; Osterman HL; Libertin C
    Arch Biochem Biophys; 1979 Jun; 195(1):95-102. PubMed ID: 112921
    [No Abstract]   [Full Text] [Related]  

  • 50. NMR studies on interactions of ribonuclease Sa with Guo-3'-P.
    Both V; Zachar J; Zelinka J
    Gen Physiol Biophys; 1983 Aug; 2(4):269-78. PubMed ID: 6432629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of various phosphodiesters and phosphomonoesters with ribonuclease N.
    Tamanoi F; Uchida T; Egami F; Oshima T
    J Biochem; 1976 Jul; 80(1):27-32. PubMed ID: 184080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Photo-oxidation and carboxymethylation of guanylribonuclease Pch1].
    Grishchenko VM; Markelova NIu
    Biokhimiia; 1979 Aug; 44(8):1447-53. PubMed ID: 40625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extended kinetic analysis of ribonuclease T1 variants leads to an improved scheme for the reaction mechanism.
    Backmann J; Doray CC; Grunert HP; Landt O; Hahn U
    Biochem Biophys Res Commun; 1994 Feb; 199(1):213-9. PubMed ID: 8123015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of ionization of the phosphate cosubstrate on phosphorolysis by purine nucleoside phosphorylase (PNP) of bacterial (E. coli) and mammalian (human) origin.
    Modrak-Wójcik A; Kirilenko A; Shugar D; Kierdaszuk B
    Eur Biophys J; 2008 Feb; 37(2):153-64. PubMed ID: 17639373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A general ribonuclease assay using methylene blue.
    Greiner-Stoeffele T; Grunow M; Hahn U
    Anal Biochem; 1996 Aug; 240(1):24-8. PubMed ID: 8811875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subsite interactions and ribonuclease T1 catalysis: kinetic studies with APGpC and ApGpU.
    Osterman HL; Walz FG
    Biochemistry; 1979 May; 18(10):1984-8. PubMed ID: 107963
    [No Abstract]   [Full Text] [Related]  

  • 57. Specific interaction of base-specific nucleases with nucleosides and nucleotides.
    Egami F; Oshima T; Uchida T
    Mol Biol Biochem Biophys; 1980; 32():250-77. PubMed ID: 6255305
    [No Abstract]   [Full Text] [Related]  

  • 58. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and kinetic study of transition state analogs for ribonuclease T1.
    Georgalis Y; Zouni A; Hahn U; Saenger W
    Biochim Biophys Acta; 1991 Dec; 1118(1):1-5. PubMed ID: 1764473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of nucleoside 3'-(S-alkyl phosphorothioates) and their use as substrates for nucleases.
    Saba D; Dekker CA
    Biochemistry; 1981 Sep; 20(19):5461-6. PubMed ID: 6271188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.